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Many studies have investigated how multiple stimuli
combine to reach threshold. There are broadly speaking
two ways this can occur: additive summation (AS) where
inputs from the different stimuli add together in a single
mechanism, or probability summation (PS) where
different stimuli are detected independently by separate
mechanisms. PS is traditionally modeled under high
threshold theory (HTT); however, tests have shown that
HTT is incorrect and that signal detection theory (SDT) is
the better framework for modeling summation.
Modeling the equivalent of PS under SDT is, however,
relatively complicated, leading many investigators to use
Monte Carlo simulations for the predictions. We derive
formulas that employ numerical integration to predict
the proportion correct for detecting multiple stimuli
assuming PS under SDT, for the situations in which
stimuli are either equal or unequal in strength. Both
formulas are general purpose, calculating performance
for forced-choice tasks with M alternatives, n stimuli, in
Q monitored mechanisms, each subject to a non-linear
transducer with exponent s. We show how the
probability (and additive) summation formulas can be
used to simulate psychometric functions, which when
fitted with Weibull functions make signature predictions
for how thresholds and psychometric function slopes
vary as a function of s, n, and Q. We also show how one
can fit the formulas directly to real psychometric
functions using data from a binocular summation
experiment, and show how one can obtain estimates of
s and test whether binocular summation conforms more
to PS or AS. The methods described here can be readily
applied using software functions newly added to the
Palamedes toolbox.

Introduction

The early visual system contains tuned mechanisms
that respond to particular stimulus features at partic-
ular locations in the visual field. For example, simple
cells are sensitive to luminance modulations of some
specific frequency, orientation, and phase. Behavioral-
ly, however, the stimuli that are ecologically relevant
are not the simple features that these mechanisms are
sensitive to. More complex stimuli are the norm, and to
represent these the visual system must combine the
outputs of the simpler mechanisms. This leads to one of
the most basic questions in vision science: How are
these outputs combined? Numerous studies have
addressed this ‘‘summation’’ question. It can be posed
at any level of the brain from the basic summation of
contrast signals (e.g., Hoekstra, Van der Goot, Van den
Brink, & Bilsen, 1974) to the summation of semantic
information between different modalities (e.g., visual
and auditory stimuli in To, Baddeley, Troscianko, &
Tolhurst, 2011), and there is no reason to expect the
answer to be the same at every level and in every
modality (although some degree of commonality would
be parsimonious).

There are two ways in which experiments are
typically conducted to investigate summation. In the
first method, detection thresholds for two component
stimuli, here termed ‘‘A’’ and ‘‘B,’’ are measured. These
can then be used to predict the threshold for the
compound stimulus ‘‘AþB’’ (e.g., Baldwin, Husk,
Meese, & Hess, 2014; Graham & Nachmias, 1971;
Graham & Robson, 1987; reviewed by Graham, 1989;
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Meese, 2010; Pirenne, 1943; Quick, Mullins, & Reich-
ert, 1978; Sachs, Nachmias, & Robson, 1971). Different
summation rules will make different predictions for the
AþB threshold, and so the results from the experiment
can be used to distinguish between them. The second
method is similar; instead of using component versus
compound stimuli the comparison is instead made
between stimuli that ‘‘grow’’ along some dimension
(e.g., increase in size). In terms of how the previous
method was described, this can be thought of as
obtaining thresholds for A, AþB, AþBþC, and so on
(e.g., Bell & Badcock, 2008; Dickinson, Han, Bell, &
Badcock, 2010; Dickinson, McGinty, Webster, &
Badcock, 2012; Loffler, Wilson, & Wilkinson, 2003;
Meese & Summers, 2012; Meese & Williams, 2000;
Robson & Graham, 1981; Rovamo, Luntinen, &
Näsänen, 1993; Schmidtmann, Kennedy, Orbach, &
Loffler, 2012; Tan, Dickinson & Badcock, 2013).
Again, different summation rules make different

predictions for how thresholds change with the number
of components.

Experiments using multiple stimuli can be used to
distinguish within and between two broad classes of
summation model: additive summation (AS) and
probability summation (PS), as illustrated in Figure 1.
AS implies that the responses from the individual
component mechanisms are summed together by a
mechanism that is sensitive to the compound stimulus.
This results in predictions that are relatively straight-
forward (see Table 1). For example, in the special case
of linear summation, one predicts an inverse propor-
tional relationship between the number of stimulated
component mechanisms and threshold. With PS on the
other hand, which is the main focus of this communi-
cation, there is no summation of the component signals
into a mechanism sensitive to the compound stimulus.
Rather, adding more stimuli improves performance
because there is a greater chance that any one of the
stimuli will be detected. Some investigators have
considered whether some combination of AS and PS
might underlie detection (e.g., Meese & Summers,
2012). However, for this communication we will only
deal with the predictions from one or another of the
standard forms of AS and PS.

When a PS model is tested it is frequently derived
under the assumptions of high threshold theory (HTT;
see Graham, 1989; Sachs et al., 1971). Under HTT the
component mechanisms will be activated if their input
exceeds some fixed threshold value. This threshold is
assumed to be sufficiently high that it is only very rarely
surpassed by the system’s internal noise on its own. The
component mechanisms in HTT have a binary
response; they are either activated or not activated
(though one must bear in mind that a weak signal may
be insufficient to reach threshold in which case the

Figure 1. The two broad classes of summation considered within

a signal detection theory framework. Top: PS; bottom: AS. N ¼
addition of internal noise, n¼ number of stimuli, s¼ exponent

on transducer function. A1 is the target alternative/interval,

while A2–AM are the non-target (i.e., noise-alone alternatives/

intervals) with M being the total number of alternatives/

intervals in the forced-choice task. MAX ¼MAX decision rule.

Attention

Window Transducer

Single

component

Multiple

components SS

Matched

(Q ¼ n)

Linear d 0 ¼ gs d 0 ¼ gs
ffiffiffi
n
p

a� 1ffiffi
n
p

Non-linear

(s 6¼ 1)

d 0 ¼ ðgsÞs d 0 ¼ ðgsÞs
ffiffiffi
n
p

a� 1ffiffi
n2sp

Fixed

(Q . n)

Linear d 0 ¼ gs d 0 ¼ nðgsÞffiffiffi
Q
p a� 1ffiffi

n
p

Non-linear

(s 6¼ 1)

d 0 ¼ ðgsÞs d 0 ¼ nðgsÞsffiffiffi
Q
p a� 1ffiffi

nsp

Table 1. Calculation of d0 and summation slope (SS) for four
models of additive summation. Notes: The number of stimulus
components is given by n, the stimulus strength of each
component by s, the input gain of the mechanism sensitive to
that component by g, and the exponent of the mechanism’s
transducer by s. Summation slopes indicate how thresholds a
decline as a function of n, assuming all component thresholds
are equal.
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observer guesses). Altogether this means that there is
almost no ‘‘penalty’’ under HTT for monitoring
additional non-target mechanisms, as any irrelevant
internal noise carried by those mechanisms will have a
vanishingly small effect on performance. This property
of the HTT–PS model affects how researchers design
their experiments. Specifically, there is no practical
difference in the HTT–PS prediction between experi-
ments that interleave their different summation condi-
tions and those that block those conditions.
Interleaving or blocking, however, does affect thresh-
olds, at least for contrast grating detection (Meese &
Summers, 2012), unfortunately for HTT.

The other form of the PS model is the one
formulated under signal detection theory, or SDT
(Green & Swets, 1966). Briefly, the component
mechanisms under SDT give a continuous response
to the presented stimulus, which is then perturbed by
independent internal noise. The SDT–PS model takes
the response from the most activated mechanism and
uses that to make a decision about the stimulus (for
example, by comparing the maximum response from
each of two intervals to determine which contained
the target). The internal noise in the non-target
interval plays a significant role in the predictions
made by the SDT–PS model, as there is no sensory

threshold to squelch it. Because of this, whether the
experimenter blocks or interleaves the different
summation, conditions will make a significant dif-
ference to the SDT–PS model prediction (as the
additional internal noise from the irrelevant moni-
tored mechanisms in the interleaved case will degrade
performance). When the conditions are blocked, the
observer can focus attention only on the relevant
channels, termed here the ‘‘Matched Attention
Window’’ scenario. On the other hand, when the
conditions are interleaved, the observer will likely
monitor all potentially relevant channels, which
means that the observer will also monitor the
channels that only contain internal noise. Tyler and
Chen (2000) coined the term ‘‘Fixed Attention
Window’’ for this scenario. The difference between
Matched and Fixed Attention Window scenarios is
illustrated in Figure 2. The figure also illustrates three
of the variables that are key to the expositions in this
communication: Q is the total number of monitored
channels/mechanisms on each trial; n is the number
of those mechanisms that are activated by the target
stimuli; and M is the number of intervals that are
presented on each trial (e.g., an M of 2 gives a two-
interval forced-choice task like that shown in Figure
2).

There is strong evidence that SDT is a better model
of detection than HTT (Green & Swets, 1966; Laming,
2013; Nachmias, 1981). The widespread use of the
HTT–PS model may therefore be surprising—howev-
er, there may be a number of reasons for this. First,
the mathematical basis for calculating PS under the
assumptions of SDT is more complex than with HTT.
Current expositions of the equations involved are not
fully generalized across n, Q, and M and are often
daunting to the non-mathematician. Moreover, the
predictions made by the existing theoretical papers on
PS under SDT are not always presented as sufficiently
different to those formulated under HTT-PS for
authors to reconsider their choice of model. One aim
of this paper is to reiterate what some investigators
have already pointed out (e.g., Meese & Summers,
2012; Tyler & Chen, 2000), namely that there are
significant differences between the two PS models both
in terms of threshold predictions and, as importantly,
predictions for the slopes of psychometric functions.
An additional limitation of previous theoretical
expositions is that they do not always incorporate a
term for a non-linear transducer function, whereas
many studies point to an accelerating transducer at
threshold (Heeger, 1991; Legge & Foley, 1980; Meese
& Summers, 2009, 2012; Tanner & Swets, 1954). Here
we use s as the exponent on stimulus intensity to
embody a non-linear transducer, with s . 1 for an
acclerating transducer.

Figure 2. Schematic showing different summation scenarios for

a two-interval forced-choice task (M¼2) with the target interval

containing two stimuli S1 and S2. N1–N4 signifies internal noise

in the channels/locations sensitive to the stimuli. Each green

box denotes a spatial location. In the Matched Attention

Window scenario on the left, irrespective of whether the two

stimuli are presented in the same or different spatial locations,

the observer attends to both channels sensitive to the stimuli or

locations that contain the stimuli. For this situation n¼ Q¼ 2,

where n is the number of stimuli and Q the number of

monitored channels/locations. In the Fixed Attention Window

scenario on the right, the observer attends to four channels/

locations, even though only two stimuli are present. For this

situation n ¼ 2 and Q ¼ 4.
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The relatively few researchers who have used an
SDT–PS model tend to use Monte Carlo simulations
rather than an analytic solution (e.g., Meese &
Summers, 2012). Although the Monte Carlo method is
simple to implement and will converge to an accurate
prediction given sufficient processing time, it is
markedly less efficient than an equation, even if the
equation requires numerical integration for its solution.
Execution speed is not an issue when a single
calculation is required, but for the modeling in this
communication, which involves many thousands of
calculations in order to fit multiple psychometric
functions and determine bootstrap errors of the fitted
parameters and model goodness-of-fits, Monte Carlo
simulations are prohibitively slow. An equation solu-
tion also offers a clearer insight into the workings of a
system, as its mathematical properties are stated
explicitly rather than emerging from simulated behav-
ior.

In the Appendix we derive from first principles
formulas for calculating PS under the assumptions of
SDT for both Matched and Fixed Attention Window
scenarios, for both equal and unequal stimulus
intensities, and for any n, s, Q, and M. To our
knowledge these PS equations have not been provided
before. We show how the equations can be used to
simulate psychometric functions in order to see how the
fitted threshold and slope parameters vary with the
form of summation and the four above parameters. We
discuss how the threshold and slope parameters differ
between PS and AS and differ between SDT and HTT.
Finally, we show how the equations can be used to fit
psychometric function data from an actual experiment.
For this we have conducted a binocular summation
experiment, and have used the summation equations to
estimate parameters such as the transducer exponent s
and to test whether AS or PS better accounts for the
data.

In summary, there are two primary aims to our
work. First, to reiterate some of the key differences
between the SDT and HTT frameworks for modeling
AS and PS, and second to derive numerical equations
for modeling PS under SDT.

Modeling additive summation and probability
summation

Under SDT the internal strength of a signal is
denoted by d0, which represents the distance between
the Gaussian-distributed internal noise (denoted by N)
and signal þ noise (denoted by S) distributions in
standard deviation, or z units. This is illustrated in
Figure 3, along with some of the other parameters
referred to in this section.

Additive summation

Under SDT, d0 is related to stimulus strength by:

d0 ¼ ðgsÞs ð1Þ
where s is the strength or amplitude of the stimulus
(e.g., its contrast), g is a scaling factor that converts
stimulus space into d0 space and incorporates the
reciprocal of the internal noise standard deviation, and
s is the exponent of the internal transducer. Under the
assumptions of additive internal noise, AS can then be
expressed by two equations. The first deals with
stimulus components that are of equal strength:

d0 ¼ nðgsÞsffiffiffiffi
Q
p ð2Þ

where n is the number of stimulus components and Q
the number of monitored channels. As we noted earlier,
Q can refer either to channels with different stimulus
selectivities (e.g., for different orientations or spatial
frequencies) or to different possible stimulus locations.

Figure 3. Parameters for calculating AS and PS under the assumptions of SDT. N ¼ noise distribution; S ¼ stimulus (or signal)

distribution; t¼ sample sensory magnitude; d0 ¼ separation between noise and signal distributions; U(t) and U(t� d0) are the areas

under the noise and signal distributions to the left of t; /(t) and / (t� d0) are the heights of the noise and signal distributions at t.

Based on figure 6.5 in Kingdom and Prins (2010).
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The =Q relationship embodies the fact that when
adding noise, one must add their variances, not
standard deviations. If r is the standard deviation of
the internal noise for each monitored channel, the
resulting r of Q noise distributions is =(Qr2) or r=Q;
in other words, r increases with Q by a factor of =Q.
Since r is unity (d0 is expressed in units of standard
deviation), the expression simplifies to =Q. The
relationship between n and Q determines whether one is
dealing with a Matched or Fixed Attention Window
scenario: if Q ¼ n, it is Matched, if Q . n, it is Fixed.

If the stimulus components are of unequal strength,
the equation is instead:

d0 ¼ 1ffiffiffiffi
Q
p

Xn
i¼1

ðgisiÞsi ð3Þ

where si, gi, and si are the stimulus strength, gain, and
transducer exponent of the ith stimulus component.

Table 1 presents the four main varieties of AS derived
from Equation 2, and gives the calculation of the
summation slope, which describes how detection
thresholds would be expected to vary with the number of
stimulus components n given the value of the exponent s.

Typically, we wish to model psychometric functions
of proportion correct detections Pc as a function of
stimulus strength s. In a forced-choice task, the optimal
decision rule under the assumptions of SDT, and the
rule generally assumed to be employed by observers, is
the MAX (maximum) rule schematized in Figure 1,
which states that the observer chooses as the target the
alternative or interval that produces the biggest signal.
For a single stimulus, the standard SDT formula for
converting Pc to d0 based on the MAX decision rule is:

Pc ¼
Z ‘

�‘

/ðt� d0ÞUðtÞM�1dt ð4Þ

(Green & Swets 1966; Kingdom & Prins, 2010;
Wickens, 2002), where t is the strength of a sample
signal, /(t� d0) the height of the signal distribution at t
and U(t) the area under the noise distribution to the left
of t, as shown in Figure 3. M is the number of
alternatives in the forced-choice task. A detailed
exposition of this formula is provided in Kingdom and
Prins (2010). To obtain equations for the psychometric
function for detecting multiple stimuli under AS, we
substitute Equations 2 and 3 for d0 into Equation 4.
This gives equations for Pc as a function of s, given
parameters g, s, M, Q, and n. If we denote ASSDT for
the equal and ASSDTuneq for the unequal component
stimuli situations, the two psychometric function
equations can be denoted respectively by:

Pc ¼ ASSDTðs; g; s;M;Q; nÞ ð5Þ
Pc ¼ ASSDTuneqð s1; s2::sn½ �; g1; g2::gn½ �; s1; s2::sn½ �;

M;QÞ ð6Þ

where in Equation 6, s1, s2. . .sn are the set of different
stimuli, g1, g2. . .gn their associated scaling factors, and
s1, s2. . .sn their associated transducer exponents. Both
of the above functions can be fitted to a plot of Pc
against s, with M, Q, and n as fixed parameters, and g
and s as free parameters to be estimated. Examples of
this usage will be given later.

Equation 5 can be inverted in order to calculate s from
Pc, and the resulting the function can be denoted by:

s ¼ ASSDTINVðPc; g; s;M;Q; nÞ ð7Þ

Probability summation

‘‘Probability summation’’ is somewhat of a misno-
mer in the context of either the SDT or HTT
framework, since in neither case are the component
stimulus probabilities summed. Nevertheless, we will
stick with convention. The equations for PS under the
assumptions of SDT provided in this section, which are
the main focus of this study, have not to our knowledge
been provided before. Each can be considered as a
development of equation B10 in the appendix of
Shimozaki, Eckstein, and Abbey (2003). Shimozaki et
al. only considered the specific case of PS for two
unequal strength stimuli under the Matched Attention
Window scenario (our term; see our Appendix for
Shimozaki et al.’s equation). Here we generalize
Shimozaki et al.’s equation to accommodate a larger set
of parameters. The derivation of each of the equations
below is given in the Appendix, in a manner that will
hopefully be accessible to the mathematical nonexpert.
Both equations can be considered as the PS equivalents
of Equations 2 and 3 for AS. For the equal stimulus
strength situation, the equation is:

Pc ¼ n

Z ‘

�‘

/ðt� d0ÞUðtÞQM�nUðt� d0Þn�1dt . . .

þ ðQ� nÞ
Z ‘

�‘

/ðtÞUðtÞQM�n�1Uðt� d0Þndt

ð8Þ
where, as shown in Figure 3, t is sample stimulus
strength; /(t) and /(t� d0) are the heights of the noise
and signal distributions at t; and U(t) and U(t� d0) are
the areas under the noise and signal distributions to the
left of t. For the unequal component signal strength
situation the equation is:

Pc ¼
Xn
i¼1

Z ‘

�‘

/ðt� d0iÞUðtÞ
ðQM�nÞ P

n

j¼1; j 6¼i
Uðt� d0jÞdt

� �

þ ðQ� nÞ
Z ‘

�‘

/ðtÞUðtÞQM�n�1 P
n

j¼1
Uðt� d0jÞdt

ð9Þ

Journal of Vision (2015) 15(5):1, 1–16 Kingdom, Baldwin, & Schmidtmann 5

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/Journals/JOV/933757/ on 04/17/2015 Terms of Use: 



As with the AS formulas we can substitute d0 with
(gs)s and formulate psychometric function equations
relating Pc to s for both equal and unequal stimulus
component scenarios. If we change the prefix AS to PS,
the psychometric function equations for PS can be
denoted as:

Pc ¼ PSSDTðs; g; s;M;Q; nÞ ð10Þ
and

Pc ¼ PSSDTuneqð s1; s2::sn½ �; g1; g2::gn½ �;
s1; s2::sn½ �M;QÞ ð11Þ

The inverse of Equation 10 can be denoted by:

s ¼ PSSDTINVðPc; g; s;M;Q; nÞ ð12Þ
The six function equations, three for AS (Equations

5 through 7) and three for PS (Equations 10 through
12) are all solvable using numerical integration.
Equations 7 and 12, which convert Pc to s, require in
addition an iterative search procedure.

In what follows, we demonstrate the usage of the six
function equations as well as their implementations in
the Palamedes toolbox (Prins & Kingdom, 2009) in two
ways. First we show how they can be used to simulate
psychometric functions and determine how the fitted
thresholds and slopes vary as a function of n, Q, and s,
for both PS and AS. Since summation studies typically
fit their data with a Weibull psychometric function
(e.g., Graham, 1989), for the sake of consistency we
have also fitted the simulated data with the Weibull.
The Weibull function is defined as:

Pc ¼ cþ ð1� cÞ 1� exp � d0

a

� �b
 !" #

ð13Þ

where c is the guessing rate (typically 1/M), a the
threshold at the 0.816 proportion correct level, and b
the slope. We also demonstrate the usage of the
equations and associated Palamedes routines for fitting
psychophysical data from an actual summation exper-
iment and show how to determine whether PS or AS
gives the better account of the data.

Methods

Simulated summation psychometric functions

Data from the simulated psychometric functions were
generated using Equations 5 through 7 for modeling AS,
and Equations 10 through 12 for modeling PS. The
equations were implemented by the following routines in
the Palamedes toolbox, in corresponding order:
PAL_SDT_AS_SLtoPC, PAL_SDT_AS_uneqSLtoPC,

PAL_SDT_AS_PCtoSL, PAL_SDT_PS_SLtoPC,
PAL_SDT_PS_uneqSLtoPC and PAL_SDT_PS_PC-
toSL. All routines solve the equations using numerical
integration. The Weibull fits to the simulated psycho-
metric functions used the standard psychometric func-
tion fitting routines in Palamedes.

Real psychometric functions: binocular
summation experiment

Subjects

Two of the authors, F. K. and G. S., were subjects.
Both had corrected-to-normal vision.

Stimulus generation and display

The stimuli were generated by a VISAGE graphics
card (Cambridge Research Systems, Rochester, UK)
and displayed on a Sony Trinitron F500 flat-screen
monitor (Sony Corporation, Tokyo, Japan). The
monitor was gamma-corrected after calibration with an
optical photometer (Cambridge Research Systems).
Separate projection of the stimuli to the two eyes was
achieved using the split-screen method, in which the
stimuli were presented either side of the monitor screen
and projected to the two eyes via a custom-built eight-
mirror stereoscope with a viewing distance along the
light path of 55 cm.

Stimuli

Stimuli were circular Gabor patches, with a spatial
frequency of 2 cpd and bandwidth of 1.0 octave. They
were in sine spatial phase, and either oriented �458 or
þ458 (i.e., left and right oblique). The Gabors were
presented on a midgray background of 40 cd/m2. To
facilitate fixation and fusion, the stimuli were sur-
rounded by a circular black ring 1-px wide and 4.88 in
diameter. Stimuli were presented for 150 ms with a
raised cosine temporal envelope.

There were three orientation combinations: (a)�458
to the left eye (L), right eye (R), and to both eyes (Bin);
(b)þ458 to L, R, and Bin; and (c)�458 to L,þ458 to R,
�458 and þ458 to Bin. The method of constant stimuli
was employed. For each subcondition seven logarith-
mically spaced contrasts (Michelson) were selected
based on pilot studies in order to span the range 50%–
100% correct. In two of the Bin conditions additional
contrasts were employed to obtain a good span of the
psychometric function.

Procedure

A two-alternative forced-choice (2AFC) procedure
was employed in which one interval contained the
target and the other a blank. There was an interstim-
ulus interval of 250 ms and a 1-s inter-trial interval that
followed each button press. The three orientation
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combinations were presented in separate sessions, but
within each session, the L, R, and Bin conditions and
contrasts were randomly interleaved, such that the
observer did not know on each trial whether the
stimulus was to the left eye, right eye, or both eyes.
Total trials per session was 210 (3 subconditions · 7
contrasts · 10 repeats of each subcondition/contrast).

Analysis

The triplet of psychometric functions generated for
each orientation combination (L, R, and Bin) were
fitted with both PS and AS models using the
PAL_SDT_Summ_MultiplePFML_Fit routines in
Palamedes. The routines estimate four parameters: gL,
gR, sL, and sR, which are respectively the scaling factors
(g) and transducer exponents (s) for the left and right
eyes. Standard errors on the fitted parameters were
obtained by bootstrap analysis with 200 simulations
using PAL_SDT_Summ_MultiplePFML_Bootstrap-
Parametric, and goodness-of-fits for each model
measured using the likelihood-ratio test implemented in
PAL_SDT_Summ_MultiplePFML_GoodnessOfFit,
each with 200 simulations (see Kingdom & Prins,
2010). A separate analysis was conducted in which the
exponent on the transducer s was constrained to be
equal in both eyes, and for this purpose customized
versions of the above routines were employed.

Results

Simulated summation psychometric functions

In the following simulations, plots of Pc against s
were generated using the AS and PS equations given

above, each fitted with a Weibull function in order to
obtain threshold a and slope b. For a standard 2AFC
(M¼ 2) task, we consider how a and b vary with n, Q,
and s.

Figure 4 shows two graphs, one for PS (left) the
other AS (right), each containing four simulated
psychometric functions. Each psychometric function
is generated from 30 linearly spaced s values, using
Equation 10 for PS and Equation 5 for AS. All eight
psychometric functions have input parameters M ¼ 2
(and hence a guessing rate c¼0.5 for the Weibull), Q¼
4 and s¼2 (i.e., a square-law transducer). The variable
input parameter is n: 1, 2, 3, and 4. By holding Q
constant at 4, one simulates the Fixed Attention
Window scenario, which in practice would necessitate
interleaving the component stimuli such that the
observer would be unable to match the attentional
window to only the target stimuli mechanisms. The s
values on the abscissae have been spaced logarithmi-
cally in order to reveal any differences in the slopes of
the psychometric functions as a function of n.

As the graphs show, as n increases, there is a
reduction in threshold a for both PS and AS
simulations. The slopes b decline with n for PS, but not
for AS. The decline in slope with n for PS is due to a
decrease in uncertainty (Pelli, 1985): as n increases, a
greater proportion of the Q monitored mechanisms
become task-relevant, so fewer task-irrelevant mecha-
nisms contribute only noise to performance. The
decline in b with n is a signature property of PS under
SDT for the Fixed Attention Window scenario. With
AS under SDT, a varies with n, Q, and p in a
straightforward manner according to the formulas in
the right-hand column of Table 1. Under AS, b is
invariant to both n and Q, but approximately
proportional to s.

Figure 4. Simulated psychometric functions for a 2AFC task generated by the PSSDT equation (left), and the ASSDT equation (right),

according to the Fixed Attention Window scenario with Q fixed to 4, and with a square-law transducer (i.e., s¼ 2). n varies from 1–4.

Each function has been fitted with a Weibull function (continuous lines). As n increases the functions translate leftwards, and the

slopes of the functions either decrease in the case of PS, or are constant in the case of AS The abscissa is logarithmically spaced in

order to reveal how the slopes b of the fitted Weibull functions vary with n.
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We now consider the situation for PS under SDT in
more detail. Figure 5 shows how a and b varies with n
and Q under PS, again for a square-law transducer (s¼
2). The slopes of the a-versus-n and b-versus-n plots
given for each value of Q on the graphs have been
calculated from the straight-line fits to each log–log plot.
The a-versus-n slopes on the left range from�0.3 for Q¼
2 to�0.21 for Q¼ 64. The b-versus-n slopes (i.e., the
‘‘slope of the slope’’—how the slope of the psychometric
function changes with increasing n) on the right vary
only very slightly around an average of about�0.21. If

the different component stimuli are blocked and the
observer is assumed to monitor only the signals from
relevant mechanisms (n¼Q), which we have termed the
Matched Attention Window scenario, the predictions
are the dashed lines in Figure 5. Related figures to
Figure 5 can be found in Meese and Summers (2012).

The effect of the transducer exponent s on the a-
versus-n and b-versus-n slopes is shown in Figure 6.
The a-versus-n slopes are approximately inversely
proportional to s, ranging between about�0.6 to�0.15
for a four-fold increase in s from unity. The b-versus-n

Figure 5. SDT–PS predictions from a system with a square-law transducer (s¼ 2) for a M¼ 2 AFC task. Green and red lines show the

Fixed and Matched Attention Window scenarios respectively. The left graph shows Weibull thresholds a as a function of the number

of stimuli n, for different values of Q, the number of monitored mechanisms. The a-versus-n slope values are shown aligned to each

value of Q, and are the best fitting straight lines through each log–log plot. The right graph shows Weibull slopes b as a function of n

and Q. The b-versus-n slope values are again from the best-fitting straight lines through the log–log data. The slopes for the Matched

Attention Window are shown beneath the red lines. Note that neither graph has an equal logarithmic range on the ordinate and

abscissa.

Figure 6. Effect of the transducer exponent s on the a-versus-n and b-versus-n slopes (shown in Figure 3 when s ¼ 2) plotted as a

function of Q, the number of monitored mechanisms.
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slopes vary little as a function of s (or Q for that
matter), being clustered around�0.21.

The predictions from the SDT–PS model can be
contrasted against those of HTT. The HTT–PS model
predicts no difference between the Matched and Fixed
AttentionWindow designs. Furthermore, PS under HTT
predicts no change in b with summation (Mayer & Tyler,
1986; Nachmias, 1981). The HTT–PS model uses b to
predict how a should change with summation. Under the
commonly usedMinkowski approximation (accurate for
systems with fewer than 104 mechanisms), the slope of
the function relating log a to log n is�1/b (Quick, 1974;
Robson & Graham, 1981). The AS models in Table 1
also predict no change in b with summation. For these
models, however, the exponent s provides sufficient
flexibility that any a-versus-n slope can be achieved (the
exponent also determines b).

In summary, the use of PS equations employing
numerical integration confirm and extend the signature
prediction of PS under SDT, namely that the psycho-
metric slopes should decrease with summation in
experiments where the different component stimuli are
interleaved and therefore conform to the Fixed
Attention Window scenario (Meese & Summers, 2012;
Tyler & Chen, 2000).

Results from binocular summation experiment

The data were fit with both PS and AS models, using
Equations 11 and 6 above, which incorporate respec-
tively Equations 9 and 3. Fitting was based on a
maximum-likelihood criterion, and used a multiple-fit
method, in which all three psychometric functions,
namely L, R, and Bin, were simultaneously fit with

Figure 7. Results from the binocular summation experiment with summation models fitted using the multiple-fit method. Each plot

shows proportion correct as a function of contrast for L, R, and Bin conditions (red, green, and blue circles). The three types of

stimulus combination are indicated on the left with the first number indicating the L Gabor orientation and the second number the R

Gabor orientation. Data for subject G.S. on the left and F.K. on the right. The p-value in each graph is from the transformed likelihood-

ratio goodness-of-fit test, with higher p-values indicating better fits. A star means that the model can be rejected at the p , 0.05

criterion. The ticks show which of the two models gives the better fit according to AIC. See text for details and further analysis.
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either the PS or AS model. The fixed parameters in
both models were M (number forced-choice alterna-
tives), which was set to 2, Q (number of monitored
channels) set to 2 (two eyes), and n (number of stimuli)
set to 1 for the L and R psychometric functions, and 2
for the Bin psychometric function. Note that setting Q
to 2 for all conditions follows from the fact that the L,
R, and Bin conditions (for each orientation combina-
tion) were interleaved not blocked, thus conforming to
the Fixed Attention Window scenario. The fitted
parameters were g (stimulus gain) and s (transducer
exponent) for each eye, resulting in four estimates: gL,
gR, sL, and sR. The data and model fits are shown in
Figure 7, and Table 2 shows the parameter estimates
together with bootstrap errors. The p-values in the
plots are goodness-of-fit values calculated using the
likelihood-ratio test of goodness-of-fit (Kingdom &
Prins, 2010). As can be seen, many of the models can be
rejected using the p , 0.05 criterion. It should be noted,
however, that most models are likely be rejected by this
criterion with sufficient number of trials, since no
model is perfect (Burnham & Anderson, 2002; Prins,
personal communication, January 12, 2014). An
alternative to the p-value for comparing the models is
Akaike’s Information Criterion (AIC; Akaike, 1974),
and the AS–PS AIC differences are given in Table 2. A
negative AIC difference implies that the AS model is
better, a positive AIC difference that the PS model is
better.

Table 3 presents the results of the same analysis, but
this time with the transducer exponent s constrained to
be the same in both eyes, a reasonable assumption
given that the physiology of the two eyes’ pathways is
presumably very similar (we are grateful to Tim Meese
for suggesting this model variant).

Although the relative goodness-of-fits of the PS and
AS models and their AIC differences vary considerably,
the results broadly agree with findings from previous
studies: If the left- and right-eye stimulus orientations
are the same, they combine additively, whereas if they
are cross-oriented they combine probabilistically
(Blake, Sloane, & Fox, 1981; Meese, Georgeson, &
Baker, 2006). The estimates of the transducer exponent
s in Table 3 average to 2.5 for G. S. and 1.8 for F. K.
and are close to the square-law transducer for contrast
transduction found in previous studies (Heeger, 1991;
Legge & Foley, 1980; Meese et al., 2006; Meese &
Summers, 2009, 2012; Stromeyer & Klein, 1974).

Table 4 shows thresholds, slopes, summation ratios
(SRs), and Minkowski summation (m) measures
obtained from fitting each psychometric function
separately with a Weibull. The Minkowski expression
for summation is:

Scmb ¼
Xn
i

Sm
i

" #1=m

ð14Þ

where Si is sensitivity to the ith stimulus component,

Subject Condition Better model AIC gL gR sL sR SR

G. S. þ45þ45 AS �6.900 29.861.39 29.461.52 2.6460.49 2.2260.32 1.410

�45�45 AS �0.668 30.161.58 31.761.13 2.2160.33 4.1160.66 1.175

�45þ45 PS 2.142 28.061.50 29.461.47 2.0360.32 2.3660.33 1.175

F. K. þ45þ45 AS �4.830 44.762.41 41.362.22 2.2160.33 2.0460.30 1.450

�45�45 AS �11.900 43.362.31 43.062.42 1.7860.23 1.9260.29 1.620

�45þ45 PS 12.630 37.862.62 39.062.60 1.4160.18 1.5160.19 1.270

Table 2. Model fits to the data from the binocular summation experiment with s free to vary between the eyes. Notes: The numbers
defining each condition give the orientations of the Gabor patches in the left and right eyes respectively. AS¼ additive summation, PS
¼ probability summation. gL, gR, sL and sR are the estimated parameters from the better fitting SDT model (AS or PS) together with
standard errors derived from bootstrap analysis. The better model is determined by the sign of the difference in the measure of AIC.

Subject Condition Better model AIC gL gR s

G. S. þ45þ45 AS �6.78 30.761.15 28.660.99 2.3860.20

�45�45 AS �2.21 27.260.91 34.561.08 2.9160.39

�45þ45 PS 1.91 27.361.14 30.161.15 2.2060.19

F. K. þ45þ45 AS �4.89 45.461.61 40.761.55 2.1260.18

�45�45 AS �11.90 42.561.80 43.761.80 1.8560.13

�45þ45 PS 12.50 37.361.75 39.661.83 1.4660.11

Table 3. Model fits to the data from the binocular summation experiment with transducer exponent s constrained to be the same in
the two eyes. Note: All other parameters are the same as in Table 2.
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Scmb sensitivity to the combination stimulus, n the
number of stimuli, and m the Minkowski exponent that
expresses the inverse of the degree of summation (note
that m is not the same asM, the number of alternatives/
intervals in the forced-choice task). If we replace
sensitivity in Equation 14 with the reciprocal of Weibull
threshold a, Minkowski m for the binocular summation
experiment can be expressed in the form:

1

am
Bin

¼ 1

am
L

þ 1

am
R

ð15Þ

where aBin, aL, and aR are the Bin, L, and R thresholds,
respectively. Using iterative search one can find the
value of m that satisfies this equation. The SR is the
ratio of monocular to binocular thresholds, and
expresses directly how much better two eyes are
compared to one. Rather than average the (log) values
of SR obtained from the left- and right-eye monocular/
binocular threshold ratios, we can calculate a single SR
from m (we are grateful to Tim Meese for suggesting
this method) using the relation:

SR ¼
ffiffiffi
nm
p

ð16Þ
The calculated SRs for n¼2, as well as Minkowski m

values, are given in Table 4. These values are in keeping
with those reported in the aforementioned binocular
summation studies, though it is worth noting that
higher binocular SRs have been observed for some
types of crossoriented stimuli, for example low spatial
frequency luminance (Meese & Baker, 2011) and
chromatic (Gheiratmand, Meese, & Mullen, 2013)
gratings.

Summary and conclusion

It is important to emphasize that the expositions
provided here make a number of assumptions: first,
that the internal noise limiting detection is additive (i.e.,
its variance does not change with signal strength),
second, that it is Gaussian, and third, that it is

uncorrelated. Violations of these assumptions can
reduce the predicted improvements from PS (Schwarz
& Miller, 2014). For example if the internal noise
affecting the component mechanisms is entirely corre-
lated (or where the dominant noise source occurs later
in the system), the system will behave in a winner-take-
all manner and no improvement in performance from
summation will occur.

Notwithstanding the above caveats, our new method
allows a SDT–PS model to be fitted directly to the raw
data from a psychophysical experiment. Because the
processing time when using formulas is so much less
than when using Monte Carlo simulations, it is possible
to estimate relatively quickly parameters such as the
stimulus gain and transducer exponent, their bootstrap
errors, and the goodness-of-fit of each summation
model. This means that comparisons can be made as to
whether behavior conforms to AS or PS with greater
statistical power than was possible before. Finally, the
incorporation of a non-linear transduction term results
in models with general applicability to the detection of
multiple stimuli.

Keywords: probability summation, signal detection
theory, high threshold theory, visual detection
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Subject Condition

L R Bin

SR ma b a b a b

G. S. þ45þ45 0.04260.0018 3.8360.82 0.04160.0014 5.4361.44 0.03060.0014 3.2760.69 1.41 2.03

�45�45 0.03960.0017 3.2260.71 0.03460.0012 5.6561.49 0.03160.011 4.8763.6 1.16 4.60

�45þ45 0.04260.0019 2.9760.62 0.03860.0014 4.1960.84 0.03460.0013 3.9360.95 1.17 4.45

F. K. þ45þ45 0.02860.0011 3.4860.75 0.03060.0012 3.0560.59 0.02060.001 2.9460.53 1.45 1.87

�45�45 0.03260.0014 2.8360.53 0.03160.0012 3.2860.64 0.01960.0009 2.3960.44 1.62 1.43

�45þ45 0.03460.0015 2.5360.44 0.03260.0014 3.2660.58 0.02660.0013 2.0660.33 1.27 2.93

Table 4. Weibull thresholds a and slopes b, ts, fit to the data from the binocular summation experiment. Notes: L¼ left eye; R¼ right
eye; Bin ¼ both eyes. Also given are the summation ratios (SR) and Minkowski exponents (m).
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Appendix

Calculation of PS under the assumptions of SDT

The basic SDT analysis makes the assumption that
the noisy internal responses follow a Gaussian distri-
bution, allowing us to use standard conversions
between z values and probabilities. Figure A1 (top)
shows a standard normal probability distribution in
which the abscissa is given in units of standard
deviation, or z units. The ordinate in the graph is
probability density, denoted by /. Probability density
values are relative likelihoods, specifically derivatives or
rates of change of probabilities. In order to convert
intervals between z units into probabilities, one has to
integrate the values under the curve between z values. If
one integrates the curve between 0 and some value of z,
the result is U, termed the cumulative normal. Because
the total area under the standard normal distribution is
by definition unity, the cumulative normal distribution
ranges from 0–1. The cumulative normal gives the
probability that a random variable from a standardized
normal distribution is less than or equal to z.

The equation for the standardized normal distribu-
tion is:

/ðzÞ 1ffiffiffiffiffiffi
2p
p exp

�z2

2

� �
ðA1Þ
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and for the cumulative normal:

UðzÞ ¼ 0:5þ 0:5erfðz=
ffiffiffi
2
p
Þ ðA2Þ

where erf stands for the error function, which performs
the integration. The two values of 0.5 in the equation
convert the range of the function to 0–1.

Measure of d0

Figure 3 in the main body of the text shows two
normal distributions. The one labeled N shows the
distribution of noisy internal responses to a single
blank interval where no target stimulus is present. The
one labeled S shows the distribution of noisy internal
responses to the interval containing the target. Repre-
senting the sensory magnitudes of N and S as
probability distributions means that on any trial, the
actual sensory magnitudes will be random samples
from those distributions. The relative probabilities of
particular samples are given by the heights of the
distributions at the sample points.

The mean response to the interval containing the
target is higher, but the distributions still overlap. The
aim of the observer in the standard forced-choice task
is to identify on each trial the interval containing the
target stimulus. Although the overlap means that the

observer cannot be right 100% of the time, the optimal
strategy to adopt would still be to select the interval
with the biggest signal. This is termed the ‘‘MAX
decision rule.’’ When the target is detected by a single
mechanism the performance can be calculated from the
signal-to-noise ratio d0 as follows:

Pc ¼
Z ‘

�‘

/ðt� d0ÞUðtÞM�1dt ðA3Þ

where M is the number of alternatives/intervals from
which the target has to be chosen (Green & Swets, 1966;
Wickens, 2002). An exposition of the derivation of this
equation can be found in Kingdom and Prins (2010).

Where the observer uses a MAX decision rule over
multiple mechanisms, however, the prediction is more
complicated. Below, we show how the relevant
formulas may be derived. Our formulas can be
considered as extensions of equation B10 in Shimozaki
et al. (2003), which we derive below and which is itself
an extension of Equation A3. One can also see parallels
to our formulas in the equations for PS in Tyler and
Chen (2000).

Equal stimulus intensities

First consider the Matched Attention Window
scenario in Figure 2, for the case where there are two,
equally detectable stimulus components, call these S1
and S2. Since we are dealing with PS, we assume that the
two stimuli are detected by independent mechanisms,
and that both mechanisms are monitored to maximize
the chance of detecting the target. The number of
monitored mechanisms is symbolized by Q, and the
number of those that contain signal by n. The observer
monitors only the relevant mechanisms, so n¼ Q.

The decision rule here is the same as for the single-
stimulus M-AFC task: Select the interval/alternative
with the biggest signal (i.e., the MAX rule). However,
because the observer is monitoring two mechanisms, a
correct decision will be made if either S1 or S2 produces
the biggest signal. In order to calculate the expected Pc
for this situation, we must first calculate the probability
that S1 will produce the biggest signal, second that S2

will produce the biggest signal, and then add the two
probabilities together. Note that for either one of the
two stimuli to produce the biggest signal, a sample
from it must be bigger than both noise signals from the
null interval and the signal from the other stimulus in
the target interval.

Taking the noise samples first, there are two on each
trial. The probability that the sample t from S1 will be
greater than a noise signal is the probability that the
noise signal will be less than t, which from Figure 3 is
U(t). Thus the probability that t from S1 will be greater
than both noise signals is U(t) · U(t)¼ U(t)2. By the

Figure A1. Top Gaussian distribution plots probability density

against z in standard deviation units. The shaded area to the left

of t gives the probability that t will be greater than all random

samples less than t, which is 0.84 in the example shown. Bottom,

cumulative probability curve, shows how this probability grows

with t. Figure from Kingdom and Prins (2010), with permission.
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same argument, the probability that a sample t from S1

will be greater than the signal from the other stimulus
S2 is U(t� d0). To obtain the probability that the
sample t from S1 will be greater than both noise signals
and the other stimulus signal, we multiply these two
probabilities together: U(t)2U(t� d0). And to obtain the
probability P that a random sample t from S1 will
produce the biggest signal, we integrate this product
across all values of t, taking into account the relative
probability of obtaining t, which is given by its height
in the stimulus distribution: /(t � d0). The result is:

P ¼
Z ‘

�‘

/ðt� d0ÞUðtÞ2Uðt� d0Þdt ðA4Þ

Remember, however, that there are two stimuli in
the target interval, so we must include the probability
that the other stimulus will produce the biggest signal.
Since the probabilities that the two stimuli will produce
the biggest signal are the same, we simply multiply
Equation A4 by 2 to obtain the desired result. Hence:

P ¼ 2

Z ‘

�‘

/ðt� d0ÞUðtÞ2Uðt� d0Þdt ðA5Þ

The next step is to generalize Equation A5 to any
number of M and n. In general the number of noise
signals in the non-target interval(s) is n(M� 1), and the
number of other stimulus signals in the target interval n
� 1. Incorporating these values into Equation A5, we
obtain an equation that gives proportion correct Pc:

Pc ¼ n

Z ‘

�‘

/ðt� d0ÞUðtÞnðM�1ÞUðt� d0Þn�1dt ðA6Þ

Equation A6 deals with the Matched Attention
Window scenario, where n¼Q. Now consider the Fixed
AttentionWindow scenario in Figure 2, in which some of
the monitored mechanisms in the target interval contain
only internal noise (n , Q). In this case it is possible that
the irrelevant noise-alone mechanisms in the target
interval might produce the biggest signal, resulting in a
correct decision under the MAX rule. There are Q�n
noise signals in the target interval and QM-n-1 other
noise signals with which each target noise signal must be
compared. And there are n stimulus signals with which
each noise signal in the target interval must be compared.
If we follow the same logic that led us to Equation A6,
the result is the second part of the equation below, which
has been added to Equation A6 (with the exponent
n(M�1) in Equation A6 changed to QM�n):

Pc ¼ n

Z ‘

�‘

/ðt� d0ÞUðtÞQM�nUðt� d0Þn�1dt . . .

þ ðQ� nÞ
Z ‘

�‘

/ðtÞUðtÞQM�n�1Uðt� d0Þndt

ðA7Þ

Note that Equation A7 reduces to Equation A6 when
n¼ Q. We designate Equation A7 as the general
equation for computing PS under SDT for both
Matched and Fixed Attention Window scenarios, when
all n stimuli produce the same d0. This equation is
invertable, because only a single d0 value is involved;
however, there is no simple solution to the inversion so it
has to be implemented by an iterative search procedure.

Unequal stimulus intensities

In the case of unequal stimulus intensities, our two
stimuli, S1 and S2 have different d

0 values: Call these d01
and d02. Take first again the Matched Attention
Window scenario. Following the same argument as
above, we begin with the probability that a sample t
from S1 will be bigger than the two noise signals in the
null interval. The probability that sample t will be
bigger than the one other stimulus signal is U(t� d02).
Integrating across all t samples of S1 and then adding in
the corresponding integral for the probability that S2

will provide the biggest signal, we obtain.

Pc ¼
Z ‘

�‘

/ðt� d01ÞUðtÞ
2Uðt� d02Þdt . . .

þ
Z ‘

�‘

/ðt� d02ÞUðtÞ
2Uðt� d01Þdt ðA8Þ

For an M-AFC task this extends to:

Pc ¼
Z ‘

�‘

/ðt� d01ÞUðtÞ
2ðM�1ÞUðt� d02Þdt . . .

þ
Z ‘

�‘

/ðt� d02ÞUðtÞ
2ðM�1ÞUðt� d01Þdt ðA9Þ

which is equation B10 in Shimozaki et al. (2003).
Extending the same logic to the three stimulus case,
with d0s d01, d

0
2 and d03 we obtain:

Pc ¼
Z ‘

�‘

/ðt� d01ÞUðtÞ
3ðM�1ÞUðt� d02Þ

·Uðt� d03Þdt . . .

þ
Z ‘

�‘

/ðt� d02ÞUðtÞ
3ðM�1ÞUðt� d01Þ

·Uðt� d03Þdt . . .

þ
Z ‘

�‘

/ðt� d03ÞUðtÞ
3ðM�1ÞUðt� d01Þ

·Uðt� d02Þdt ðA10Þ
Note that as we introduce more stimuli, we increase

the number of terms in each integral because there are
now more stimuli with individual d0 values that must be
compared to each of the others under consideration.
However, if we replace the right hand part of each
integral with the terms containing different d0 values by
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the product notation, and then use the sum notation to
add together the different integrals, we can generalize
Equation A10 to n signals to obtain:

Pc ¼
Xn
i¼1

Z ‘

�‘

/ðt� d0iÞUðtÞ
nðM�1Þ P

n

j¼1; j 6¼i
Uðt� d0jÞdt

ðA11Þ

For the Fixed Attention Window scenario with
unequal stimuli and Q-monitored mechanisms we
apply the same logic as was applied to Equations A5
and A6. The result is:

Pc ¼
Xn
i¼1

Z ‘

�‘

/ðt� d0iÞUðtÞ
QM�n P

n

j¼1; j6¼i
Uðt� d0jÞdt

� �

þ ðQ� nÞ
Z ‘

�‘

/ðtÞUðtÞQM�n�1 P
n

j¼1
Uðt� d0jÞdt

ðA12Þ

Equation A12 thus calculates Pc for n independently
detected stimuli with internal stimulus strengths d01, d

0
2,

d03. . .d
0
n, for an M-AFC task with Q monitored

mechanisms, according to the MAX decision rule
under the assumptions of SDT.
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