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Abstract

K-selected species with low rates of sexual recruitment may utilise storage effects where low adult mortality allows a number
of individuals to persist through time until a favourable recruitment period occurs. Alternative methods of recruitment may
become increasingly important for such species if the availability of favourable conditions for sexual recruitment decline
under rising anthropogenic disturbance and climate change. Here, we test the hypotheses that asexual dispersal is an
integral life history strategy not only in branching corals, as previously reported, but also in a columnar, ‘K-selected’ coral
species, and that its prevalence is driven by the frequency of severe hurricane disturbance. Montastraea annularis is a long-
lived major frame-work builder of Caribbean coral reefs but its survival is threatened by the consequences of climate
induced disturbance, such as bleaching, ocean acidification and increased prevalence of disease. 700 M. annularis samples
from 18 reefs within the Caribbean were genotyped using six polymorphic microsatellite loci. We demonstrate that asexual
reproduction occurs at varying frequency across the species-range and significantly contributes to the local abundance of
M. annularis, with its contribution increasing in areas with greater hurricane frequency. We tested several competing
hypotheses that might explain the observed pattern of genotypic diversity. 64% of the variation in genotypic diversity
among the sites was explained by hurricane incidence and reef slope, demonstrating that large-scale disturbances combine
with local habitat characteristics to shape the balance between sexual and asexual reproduction in populations of M.
annularis.
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Introduction

Sessile, clonal organisms are an important component of

terrestrial and aquatic communities [1–5]. They grow through

replication of modules (budding of polyps or vegetative propaga-

tion) and can reproduce asexually using a variety of mechanisms

including mechanical fragmentation of individuals, fission through

partial mortality, and release of asexually generated propagules

[6–9]. Sessile, clonal organisms often also produce sexually

generated offspring [3,6], which typically increases genetic di-

versity. Sexually and asexually derived propagules have the ability

to disperse beyond the natal population, whereas the dispersal

ability of offspring generated by fragmentation or fission is much

more limited [10]. The proportions of sexual and asexual

recruitment within populations of clonal organisms can be

influenced by biotic and abiotic factors [11–15]. Disturbance in

particular has been highlighted as a mechanism that enhances and

retards asexual recruitment in populations of aquatic [16–18] and

terrestrial species [10,19,20].

The ability of a species to reproduce sexually and asexually is

suggested to influence ecological and evolutionary processes such

as local adaptation, space pre-emption, species longevity and gene

flow [6,10,21,22]. While sexually produced propagules may

establish widely dispersed, genetically diverse populations, asexual

recruitment via fragmentation or fission may assist in the rapid

expansion of a population within an area and facilitate the

adaptation of a few well-suited genotypes to local ecological

conditions [15,23,24], or aid in the colonisation of habitats

unsuitable for propagule settlement [25]. Furthermore, asexual

reproduction can increase the longevity of a species beyond that of

an ecologically equivalent aclonal species [26], spread the risk of

mortality among individuals within a genet and increase cumu-

lative fecundity [9,25].

Clonal organisms exhibit a variety of life history strategies in

which the relative importance of sexual and asexual reproduction

varies. At one extreme are classic ‘r-selected’ species. These are

typically fast growing and short lived species with a low

competitive ability, therefore their survival is dependent on the
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capacity of the population to produce large numbers of offspring

via sexual or asexual reproduction [27,28]. At the other extreme

are ‘K-selected’ organisms. These species are typically slow

growing, characterised by high longevity, are well adapted to

their environment and are successful competitors, which enables

populations to dominate and expand to the carrying capacity of

the habitat [27,28]. The ability of K-strategists to dominate in the

presence of low rates of sexual reproduction has led to the

hypothesis that some species utilise storage effects, whereby the

persistence of a small group of adults maintains the population

when recruitment fails [29]. Low adult mortality within these

organisms allows a number of individuals to persist through time

until a favourable recruitment period occurs [29]. However,

potential problems may exist for species employing storage effects

if favourable conditions for recruitment occur so infrequently that

they fall outside the life span of the cohort. Here, we study a system

in which the capacity of storage effects may have been severely

compromised in recent years and is predicted to deteriorate

further.

Coral reefs have experienced large shifts in community structure

in recent years, with many reefs, particularly in the Caribbean,

undergoing a transition from coral-dominated to algal-dominated

reefs [30–32]. Declining reef health has been attributed to natural

and anthropogenic disturbances including: a reduction in key

herbivorous species through overfishing and disease [33,34],

increased frequency and severity of hurricanes [35–37], increased

frequency of mass-bleaching events [38] and increased frequency

and prevalence of disease [39]. The rapid proliferation of

macroalgae observed on reefs can reduce the rate of coral

recruitment [40,41]. Therefore, favourable conditions for the

recruitment of sexually generated larvae are likely to have declined

in recent decades and may become even less frequent [42]. Thus,

further inhibiting the recruitment success of reef species, including

those that utilise storage effects. Moreover, the frequency of

favourable conditions for sexual recruitment may decline beyond

that necessary to sustain population levels.

The massive coral Montastraea annularis (Ellis and Solander),

sensu stricto, is a dominant frame-work builder of Caribbean coral

reefs, forming dome-shaped colonies frequently over 1 m in

diameter, and composed of columns. The abundance of this

important coral species has declined in the past 25 years with some

populations in St John, US Virgin Islands, showing a 30%

decrease in cover over an eleven year period [43]. M. annularis

colonies are characterised by a slow growth rate of ,10 mm yr21

[44,45] and a high longevity, with many colonies in a population

estimated to be more than 100 years old. Sexual reproduction

occurs annually utilising a mass-spawning event [46] yet the

recruitment rate of sexually generated larvae into adult popula-

tions is low [43,47,48]. Such a paucity of sexual recruits in spite of

annual broadcast spawning of gametes, high colony fecundity and

relatively high fertilisation rates [46,49,50], suggests that popula-

tions of M. annularis may utilise a storage effect, where significant

recruitment of sexually derived larvae only occurs on the scale of

decades when conditions are favourable [41]. Using a size-based

demographic model, Edmunds & Elahi [43] demonstrated that

episodic recruitment on a scale of once every 25 years was unable

to sustain current population levels of M. annularis at St. John, U.S.

Virgin Islands. Therefore, alternative modes of colony dispersal,

such as asexual reproduction, are likely to become increasingly

important for the persistence of M. annularis.

Although massive, ‘K-selected’ corals grow through asexual

budding (like all scleractinians), the widespread existence of

asexual methods of colony dispersal has only recently been

discovered [51,52]. In Honduras, spatially-discrete colonies of M.

annularis were, on occasion, clonemates [51]. Because the level of

clonality was highest at the site with greatest physical disturbance

(explained at this local scale by differences in wave exposure), we

hypothesized that physical colony breakage was the most likely

mechanism generating clones. Here, we investigate the generality

of this observation across the Caribbean and test a refined

hypothesis: asexual dispersal is an integral life history strategy of

M. annularis and its prevalence is driven by physical disturbance,

which at this basin-scale is mainly related to changes in the

occurrence of hurricanes. Because hurricane incidence varies by at

least an order of magnitude across the Caribbean region [53], the

frequency of clonemates should reflect such large-scale geographic

patterns. In addition, we test several other competing hypotheses

that may help to explain the observed patterns of clonality among

populations of M. annularis, including exposure, colony size, reef

slope and larval supply.

Methods

We refer to a group of genetically identical colonies descended

from a single zygote as a ‘‘genet’’ [54] and term spatially

independent colonies within the genet ‘‘clonemates’’. Spatially

independent colonies are defined as colonies with no interconnect-

ing tissue or skeleton.

Sampling
The necessary permits for collection and export of coral samples

were provided by the Department of Fisheries, Nassau, The

Bahamas; Fisheries Department, Belize City, Belize; Secretaria de

Agricultura y Ganaderia Despacho Ministerial, Tegucigalpa,

Honduras; Department of Public Health, Willemstad, Curaçao;

Government of Colombia. CITES import permits were provided

by the Department for the Environment, Food and Rural Affairs,

Bristol, UK.

Tissue samples were collected from a total of 700 Montastraea

annularis (sensu stricto) colonies at 18 reefs in 8 regions of the

Caribbean (Fig. 1; Table 1). The Caribbean basin was divided into

three latitudinal bands (high, medium and low hurricane

frequency) using the average number of hurricanes to strike an

area in any given year (Fig. 1) [55]. Hurricanes have impacted the

Caribbean in a spatially heterogeneous way. Although average

hurricane incidence for the period 1863–2004 is 8.8666.0 for the

entire Caribbean basin, some areas have not been affected by

hurricanes at all and others have been impacted 32 times. Using

this information, we selected locations that have been impacted by

low (0–3 hurricanes, Curacao and Colombia), medium (10–15,

Belize and Honduras) and high (20–25, the Bahamas) hurricane

frequency (Fig. 1). Within each band, locations were selected based

on the presence of M. annularis reefs and the feasibility of sampling.

In each of the locations, two or three reefs were selected

a minimum of 2 km apart.

Each site was located on the forereef at a depth of between 3–

7 m and a circular sampling plot was established with a minimum

area of 78.5 m2. Every M. annularis colony within each plot was

sampled and its location recorded by noting the distance (to

nearest 5 cm) and bearing (to nearest 5 degrees) from the centre of

the sampling plot. Due to the low density of colonies at three sites

in Colombia (Palo, Palo 1 and San Bernardo) the circular

sampling plot was replaced by a haphazard transect across the reef

(the area covered by the transect was not measured). Individual

colonies were sampled as they were located along the transect and

the distance and bearing to the previous colony was recorded (in

the majority of cases). Where colony size was measured, the

length, width and height of the colony to the nearest 5 cm were

Patterns of Clonality in Montastraea annularis
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recorded. Colony condition was estimated as percent of live tissue.

One sample (1 cm61 cm) was taken from the edge of a lobe on

each colony using a hammer and chisel and placed in a labelled

zip lock bag. On returning to shore each sample was preserved in

70% alcohol and stored at 4uC prior to DNA extraction.

Genotyping
Six polymorphic microsatellite loci, developed by Severance

et al [56], were used to identify genets within populations of

M. annularis. DNA extraction and genotyping of samples were

undertaken as described in Foster et al [51]. In brief, two multiplex

polymerase chain reactions (PCR) were carried out per sample

Figure 1. Study countries and regions in the Caribbean from which samples of Montastraea annularis were collected. Base map
indicates the frequency of occurrence of hurricanes category 1–5 in the last 141 years (1863–2004; [53]).
doi:10.1371/journal.pone.0053283.g001

Table 1. Location, reef, approximate GPS coordinates and hurricane frequency for 18 Montastraea annularis sites sampled in the
Caribbean.

Country Region Reefa Latitude (u) Longitude (u) Hurricane Frequency

Bahamas New Providence School House Reef (SCR) 24.588 277.3005 High

Propeller Reef (PR) 25.0046 277.3309 High

San Salvador Seahorse Reef (SHR) 24.0878 274.2852 High

Snapshot Reef (SSR) 24.0230 274.3158 High

Belize Glovers Reef Long Cay (LC) 16.7540 287.7814 Medium

West Reef (WR) 16.7582 287.8768 Medium

Caye Caulker Coral Gardens (CG) 17.7484 288.0233 Medium

Eagle Ray (ER) 17.7203 288.0136 Medium

Colombia Cartagena Palo (PA) 10.268 275.622 Low

Palo 1 (PA1) 10.277 275.611 Low

Pendales (PE) 10.238 275.597 Low

San Bernardo Rosario Sur (RS) 10.161 275.788 Low

San Bernardo (SBE) 9.777 275.908 Low

Curaçao Curaçao Buoy 1 (BU1) 12.1259 269.0523 Low

Snakebay (SNB) 12.139 269.0021 Low

Honduras Roatan Seaquest (SQ) 16.294 286.600 Medium

Sandy Bay (SB) 16.334 286.568 Medium

Western Wall (WW) 16.271 286.604 Medium

aReef abbreviation used in text and figures is provided in parentheses.
doi:10.1371/journal.pone.0053283.t001
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using fluorescently labelled primers. PCR products were visualized

using a CEQ 8000 (Beckman Coulter) automated DNA sequencer

with an internal size standard (Size Standard 400) for accurate

sizing. For samples collected in Colombia, PCR products were

visualised using an ABI 310 (Applied Biosystems) automated DNA

sequencer with an internal size standard (Gene Scan 500-LIZ) for

accurate sizing. Electropherograms were analysed using Gene-

Marker Software 1.5 (Soft Genetics) and alleles were scored based

on amplicon size. Owing to the presence of null alleles in certain

populations, samples from Honduras and Colombia were analysed

using only four of the six microsatellite loci and samples from

Glovers Reef were analysed using only five of the six microsatellite

loci. A selection of random samples was re-amplified (n = 34) and

allele scores were consistent with the first amplification with

minimal error (inconsistent allele scored in 8 out of 312 cases).

Genotyping results for Honduras (generated in the same

laboratory with the same equipment) were taken from Foster et al

[51].

Analyses

Sampling
Unless a population is completely dominated by a single genet,

sampling effort can affect the number of genets (Ng) detected

within a population. A minimum target size of 35 colonies sampled

per location was established a priori. We started with a sampling

area of 78.5 m2 and expanded this area only if the target sampling

size could not be reached. Thus, sampling effort was kept constant

and the results from different reefs were directly comparable.

Genotyping
Of the 700 samples collected, 698 were successfully genotyped.

Samples which had identical alleles at all analysed loci were

identified as clonemates belonging to the same genet. Identical

multilocus genotypes were never shared between sites, only within

sites. The probability of identity (PID) was calculated to provide

a conservative estimate of the probability that two colonies

sampled from the same site share a multilocus genotype by chance,

not by descent [57]. Biased and unbiased PID was calculated for

each locus by GIMLET [58] and multiplied across loci to give the

combined PID for each site [57]. The small PID values calculated

for the sites (Table 2) indicate the low probability of misidentifying

colonies as clonemates when they are not. Microchecker was used

to check for the presence of null alleles [59].

Genotypic Diversity
Genotypic evenness was calculated as Go/Ng [60] where Go is

the observed genotypic diversity. Go was calculated as:

Go~1=
X

pi
2

where pi is the frequency of the ith genotype in the population

[61]. Genotypic evenness equals zero in a population dominated

by a single genet and one where each genet is represented by an

equal number of individuals. The contribution of sexual and

asexual reproduction to population structure (genotypic diversity)

was estimated by calculating the ratio of the observed genotypic

diversity, Go, over the expected genotypic diversity, Ge [61].

Genotypic diversity (Go/Ge) equals one in a solely sexual

population and zero in a population dominated by a single genet.

Based on the combination of genotypic diversity and evenness,

populations were classified into three groups (sexual, mostly sexual

and mostly asexual) to facilitate analysis [15].

Colony Size
The size of colonies (volume, m3) within each site was calculated

as the product of colony length, width and height (Table 3). As the

size distribution of colonies was skewed towards smaller sizes the

data were log transformed. We predicted that the size of colonies

within a site would be influenced by hurricane incidence, with

those sites that had experienced a greater number of hurricanes

having smaller average colony size. Log mean colony size within

each site was analysed across sites and entered into a linear

regression with hurricane incidence as the independent variable

and a linear mixed effects model with genotypic diversity as the

dependent variable. Log mean colony size was compared between

clonemates and non-clonemates and among the three clonal

structure groups identified.

Spatial Distribution of Clonemates
The spatial distribution of colonies at each site was mapped

on to polar plots using the radial sampling coordinates. XY

distances were then calculated for each colony and the pairwise

distances between clonemates were calculated. To discriminate

the mechanism by which potential clonemates arose, we

assumed that storm-induced colony fragmentation must have

occurred when the separation of clonemates exceeded that of

the average adult colony size. If the distance between two

clonemates was less than the width of an average adult colony

(66 cm wide 61.38 cm; based on the average width of colonies

in the 18 sites) it was not possible to discount origins of partial-

colony mortality (though severe colony erosion to the colony

base only occurs rarely, Mumby pers. obs.).

Hurricane Incidence
We predicted that a site with a high hurricane incidence was

likely to have more asexually derived colonies than a site with a low

hurricane incidence. Hurricane incidence was calculated by

quantifying the number of storms experienced by each reef

between 1863 and 2004. Hurricane-force winds may extend

several kilometres from the hurricane track. We calculated the

frequency of hurricanes at any given reef site using a standard

protocol, where the area of influence of each hurricane is captured

by a buffer of varying width according to the intensity of the storm

[15,55]: a 35 km buffer zone for Tropical storms (TS) and

category 1 and 2 hurricanes (HS1 and HS2), a 60 km buffer zone

for category 3 hurricanes (HS3) and a 100 km buffer zone for

category 4 and 5 hurricanes (HS4 and HS5). Storm tracks (http://

maps.csc.noaa.gov/hurricanes) were queried for each reef using

ArcGIS 9.1 and each storm was counted once when it entered its

strength-specific buffer zone (Table 3). Hurricane incidence was

entered into a linear mixed effects model with genotypic diversity

as the dependent variable.

Reef Slope
The gradient of the continental shelf on which a reef is located

could affect the amount of asexual recruitment within populations,

as observed by Baums et al [15]. Colonies within a population

located on a steeper slope may be more susceptible to asexual

reproduction as the slope could be exposed to higher disturbance

strength. In addition, fragments might be moved farther from the

parent colony in these conditions, whereas fragments are likely to

be retained close to the parent colony on gently sloping shelves.

Furthermore, a steeper slope may intensify the impacts of

hurricanes through increased wave amplitude and power thereby

causing more fragmentation [62,63].

Patterns of Clonality in Montastraea annularis
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Reef slope was calculated using Erdas Imagine 8. Landsat TM

images of each location were used to determine the reflectance of

band 1 in three areas of pixels at the approximate location of each

site (known depth) and two areas of pixels at approximately 20 m.

Depth was plotted against the natural log of reflectance and the

equation of the trendline could then be used to calculate depth at

any point using the reflectance value of band 1. A transect line was

drawn on the Landsat image from the site to approximately 20 m

and the length in metres was recorded. The depth at the start and

end of the transect was calculated using the equation generated

above and change in depth was determined. The change in depth

and length of transect were entered into the following equation to

determine slope:

Table 2. Probability of identity (PID) for each locus within each region for Montastraea annularis sampled across the Caribbean.

Region Locus Biased PID Unbiased PID Combined Biased PID Combined Unbiased PID

San Salvador 5 0.03996 0.03223 7610210 1.1610210

11 0.00563 0.00268

12 0.00749 0.00403

28 0.083 0.07209

4 0.06829 0.05952

8 0.7304 0.7195

New Providence 5 0.06064 0.05219 4.261029 2.8610210

11 0.01166 0.00752

12 0.00483 0.00238

28 0.08446 0.07448

4 0.08996 0.0815

8 0.8844 0.88

Caye Caulker 5 0.04911 0.03375 3.3610210 7.6610212

11 0.00782 0.00252

12 0.00525 0.00108

28 0.04569 0.03385

4 0.03979 0.02756

8 0.8936 0.8857

Glovers Reef 5 0.02781 0.02292 2.561028 8.961029

12 0.00509 0.00290

28 0.04114 0.03555

4 0.04965 0.04325

8 0.8769 0.8729

Curaçao 5 0.05122 0.04091 7.7610210 6.3610211

11 0.00835 0.00369

12 0.00599 0.00208

28 0.07769 0.06574

4 0.06122 0.04971

8 0.6319 0.6133

Roatan 5 0.02682 0.02365 8.761026 6.661026

28 0.0744 0.06957

4 0.06225 0.05738

8 0.7033 0.6975

Cartagena 5 0.02967 0.0291 1.261026 5.661027

28 0.04048 0.03269

4 0.01285 0.008035

8 0.7462 0.7354

San Bernardo 5 0.0541 0.03841 3.061026 4.561027

28 0.04227 0.02699

4 0.01303 0.004379

8 1 1

Note: combined probability of identity for each region also provided.
doi:10.1371/journal.pone.0053283.t002
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Slope~ a tan Ddepth=Ddis tan ceð Þð Þ| 180=pðÞð Þ

Reef slope (Table 3) was entered into a linear mixed effects

model with genotypic diversity as the dependent variable.

Exposure
Site exposure may influence the proportion of asexual re-

cruitment within a population. Colonies within a site exposed to

the prevailing winds may fragment more frequently than colonies

within a site rarely exposed to strong winds and large waves. The

level of exposure experienced by individual sites can be estimated

using fetch and wind speed to calculate wave power. Wind speed

data was obtained for every site over a twelve month period,

between 2004 and 2007, from Weather Underground (www.

weatherunderground.com). For each site, the closest weather

station was selected and wind speed (m s21) and direction were

collected using historical data sets. Exposure was calculated using

the protocol described by Harborne et al [64]. An index of

exposure for each site (Table 3) was entered into a linear mixed

effects model with genotypic diversity as the dependent variable.

Larval Input
Larval input may influence the proportion of asexual re-

cruitment within a population. Populations with higher fluxes of

non-clonal corals (i.e. higher sexual recruitment) may have a lower

proportion of asexually derived colonies purely because the input

of larvae to the site is high. In order to test this alternative

hypothesis, a larval connectivity model (described below) was used

to estimate the amount of larval input (sexual recruitment) at each

site. Larval input was then entered into a linear mixed effects

model with genotypic diversity as the dependent variable.

The larval connectivity model was composed of four essential

components that were adapted to M. annularis as follows: (1) the

benthic seascape module used UNEP-WCMC [65] and Coral

Reef Millennium Mapping Project [66] remote sensing data to

generate n= 1,900 (ca. 5 km610 km) coral reef polygons

representing discrete spawning and settling habitats in the

Caribbean; (2) the oceanographic module used the eddy-resolving,

basin-scale Hybrid Coordinate Ocean Model (HYCOM 1/12u)
with Global Ocean Data Assimilation Experiment (GODAE)

providing daily 3-dimensional velocity predictions from 2004 to

2008 [67]; (3) the biological module parameterized for the

spawning strategy and early life history traits of M. annularis

(including mortality - see Table 4) prescribed passive advection of

planulae during the pre-competency period and active settlement

throughout competency following Baums et al [68]; lastly, (4)

a Lagrangian stochastic module moved individual particles by

integrating information from other modules at each time step

(DT=2 h). The larval connectivity model (detailed algorithm in

Paris et al [69]) recorded the source, destination, and fate of each

simulated planula spawned in each reef polygon during each

reproductive cycle (Table 4), generating a matrix of larval

migration M.

Results

Genotypic Diversity
A total of 698 samples were successfully genotyped from 18 sites,

identifying 466 multilocus genotypes (genets). Of these genets,

81% consisted of a single clonemate, 18% were represented by 2

Table 3. Physical parameters for 18 populations of Montastraea annularis across the Caribbean.

Region Reefa
Hurricane
Incidenceb Reef Slope (u) Exposure Indexc

Log Colony Sized

(m3) Larval Input (Number of particles)

Roatan SB 8 3.19 0.039 20.97360.08 192.2

SQ 8 1.79 2.0561026 20.68660.07 192.2

WW 8 7.75 2.4461024 20.75360.11 385

Caye Caulker CG 16 0.50 0.107 20.78860.11 545.6

ER 16 0.79 0.125 20.57260.14 814

Glovers Reef LC 6 4.48 1.961027 20.29560.10 189.2

WR 6 5.05 0.002 20.45860.07 620.8

San Salvador SHR 17 0.83 2.150 20.65160.10 280

SSR 17 1.55 0.493 20.92460.10 360

New Providence SCR 19 1.06 3.127 21.43860.13 1393.2

PR 19 1.29 4.901 21.11460.08 2.2

Curaçao BU1 3 8.07 1.71610216 21.50660.11 64.4

SNB 3 4.94 5.31610223 21.49960.11 64.4

Cartagena PA 0 0.08 0.035 0.41560.10 35.2

PA1 0 0.08 0.009 0.16860.09 35.2

PE 0 0.11 2.8061028 20.20360.23 35.2

San Bernardo RS 0 2.00 1.2161026 20.57560.36 236

SBE 0 1.15 4.918 0.39460.15 370.4

aReef abbreviations provided in Table 1.
bNumber of hurricanes to pass a location between 1863 and 2004.
cExposure values of 10223 are effectively zero.
dMean6SE.
doi:10.1371/journal.pone.0053283.t003
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to 14 colonies and the remaining 2% of genets were comprised of

over 20 colonies (Fig. 2). The number of clonemates per genet

differed among sites (Kruskal-Wallis H= 31.05, p = 0.020,

df = 17), with Buoy 1 (Curaçao) having significantly more

clonemates per genet compared to the other sites.

Variation in clonal structure was represented by indices of

genotypic diversity and evenness (Table 5). Both indices ranged

from a value of almost 0 (where a few genets dominated) to 1

(where each genet was represented by a single colony) for all 18

sites sampled. The proportion of asexually produced colonies

differed among the 18 sites (Kruskal-Wallis H= 32.24, p = 0.014).

For example, Buoy 1 (Curaçao) and Eagle Ray (Caye Caulker)

displayed a high proportion of asexual recruitment compared to

Pendales (Cartagena), where every colony was unique. The

average ratio of sexual to asexual reproduction (genotypic

diversity) observed at the locations studied was moderately high

at 0.5960.32. The relationship between genotypic diversity and

genotypic evenness was used to distinguish three groups of clonal

structure within the 18 sites (Fig. 3). Four sites were shown to be

sexual with an average genotypic diversity of 1.0060 and an

average genotypic evenness of 1.0060, indicating that all the

genets at the site were unique (Fig. 4a). Eleven sites were found to

be mostly sexual with an average genotypic diversity of 0.5760.19

and an average genotypic evenness of 0.7560.14, indicating the

occurrence of limited asexual reproduction but without any one

genet dominating the site (Fig. 4b). Three sites were shown to be

mostly asexual with an average genotypic diversity of 0.1160.07

and an average genotypic evenness of 0.2960.09, demonstrating

that one or two large genets dominated the site (Fig. 4c).

Colony Size
The size of colonies differed among the 18 sites (F = 22.37,

p,0.001) and the 3 clonal groups (F = 69.21, p,0.001), with

colonies in the sexual group being larger than the colonies in the

mostly sexual and mostly asexual groups. In addition, clonemates

were shown to be significantly smaller than non-clonemates across

all 18 sites (F = 46.31, p,0.001).

Interestingly, 26% of the variation in mean colony size among

sites was explained by hurricane incidence at each site (b=20.04,

p = 0.031). Those sites experiencing a greater number of

hurricanes were composed of smaller colonies than those sites

experiencing less frequent hurricanes (Fig. 5). Furthermore, 44%

of the variation observed in genotypic diversity among sites was

explained by colony size, with larger colonies dominating sites with

a higher genotypic diversity index (Fig. 6a).

Spatial Distribution of Clonemates
The distance among clonemates ranged from a minimum of

0.05 m to a maximum of 13.2 m and differed significantly among

sites (Moods x2 = 193.73, p,0.001). Conservatively, we estimated

that 90% of the clonal replication events involved breakage of the

colony and dispersal of the fragments as distances among

Table 4. Biological parameters of the Bio-oceanographic
larval connectivity model for Montastraea annularis.

Spawning Mode Broadcast

Time to Competency (days) 1–6 d

Maximum PLDa (days) 30 d

Larval half-lifeb (seconds) 1296000

Spawning schedule & production

Year Monthc Days after Full MoonNd

2004 9, 10 5 50

2005 8, 9 6 100

2006 8, 9 7 200

2007 9, 10 8 100

2008 8, 9 9 50

aPLD denotes Pelagic Larval Duration.
bLarval mortality was calculated using half-life.
cMonths are numerical. Spawning months were determined by the calendar
dates of full moons in late summer/early fall, and two spawning events were
simulated each year. Spawning was simulated over five days (5–9 days after full
moon), with peak spawning 7 days after the full moon.
dNumber of larvae released per reef polygon.
doi:10.1371/journal.pone.0053283.t004

Figure 2. Frequency distribution of genet size for populations
of Montastraea annularis across the Caribbean. In total n = 466
genets containing 698 clonemates were observed.
doi:10.1371/journal.pone.0053283.g002

Figure 3. Clonal Structure of Montastraea annularis populations
across the Caribbean. Based on the relationship between genotypic
diversity and genotypic evenness, populations (n = 18) have been
divided into 3 groups ranging from sexual to mostly asexual. Four of
the five populations from Colombia are overlapping.
doi:10.1371/journal.pone.0053283.g003
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clonemates were greater than the average size of colonies at the 18

sites.

Combination of Physical Parameters
A linear mixed effects model was created to test for competing

hypotheses that might explain the observed pattern of genotypic

diversity. The initial model included hurricane incidence, wave

exposure, colony size, reef slope, and predicted input of M.

annularis larvae for each site. Because hurricane incidence could

arguably be non-independent at the scale of individual reef systems

(region), which typically had two locations approximately 10 km

apart, we added region as a random effect.

Figure 4. Polar plots of Montastraea annularis populations at three sites showing the distribution of colonies. a) Pendales, Cartagena;
b) West Reef, Glovers Reef; and c) Eagle Ray, Caye Caulker. Each mark represents a colony. Genets represented by a single individual are indicated in
red. Individuals of the same genet are indicated by the same colour. Size classes are denoted by shape (circle = 0–0.0300 cm3; square = 0.0301–
0.1000 cm3; upward-triangle = 0.01001–0.2600 cm3; downward-triangle = 0.2601–0.8000 cm3; hexagon=0.8001–17.500 cm3). Radial axis represents
distance in m; angular axis represents angle in degrees. Number of colonies is 12, 51 and 39, respectively. All M. annularis colonies present within the
circles were sampled.
doi:10.1371/journal.pone.0053283.g004
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The only significant effects were hurricane incidence and reef

slope (Table 6; Figs. 6b and 6c), both of which were highly

significant (p,,0.05), explaining 64% of the variation in

genotypic diversity among the 18 sites. Genotypic diversity was

lower at sites located on steeper reef slopes and subject to higher

hurricane incidence (Fig. 6b and 6c). Re-running the model

without random effects gave a coefficient of determination, r2, of

0.59 (p= 0.0004).

Discussion

The clonal structure of M. annularis was shown to vary

considerably across the Caribbean, from genetically diverse

populations in Colombia, where every colony was unique, to

genetically depauperate populations in Belize and Curaçao, where

a few genets dominated, adding support to previous findings of

asexual reproduction inM. annularis [8,51,52]. We tested a number

of hypotheses that could explain the observed pattern in genotypic

diversity across the Caribbean, and from these hypotheses only

hurricane incidence and reef slope were significant, supporting our

hypothesis that major physical disturbances have a predictable

positive impact on the incidence of asexual dispersal in this

massive coral.

Those sites that experienced a greater number of hurricanes in

the last 140 years were less genotypically diverse than those sites

that experienced fewer hurricanes. Disturbance events have been

documented to influence the proportions of sexual and asexual

Table 5. Genotypic diversity summary of Montastraea annularis colonies sampled from 8 regions of the Caribbean.

Region Reefa Area (m2) Col Densb Genet Densc Nd Ng
e Go

f Go/Ge
g Go/Ng

h
Mean Colonies
Per Genet

Roatan SB 78.5 0.61 0.47 42 37 33.92 0.81 0.92 1.14

SQ 78.5 0.68 0.61 52 48 43.61 0.84 0.91 1.08

WW 78.5 0.57 0.37 43 29 8.15 0.19 0.28 1.48

Caye Caulker CG 126.7 0.35 0.18 44 23 11.95 0.27 0.52 1.91

ER 141.0 0.28 0.09 39 12 2.53 0.06 0.21 3.25

Glovers Reef LC 98.5 0.47 0.35 46 34 27.84 0.61 0.82 1.35

WR 91.6 0.56 0.46 51 42 33.8 0.66 0.80 1.21

San Salvador SHR 169.7 0.22 0.15 38 25 15.70 0.41 0.63 1.52

SSR 149.6 0.33 0.21 50 32 21.19 0.42 0.66 1.56

New Providence SCR 88.3 0.41 0.31 36 27 21.60 0.60 0.80 1.33

PR 109.4 0.44 0.34 48 37 27.4 0.57 0.74 1.30

Curaçao BU1 78.5 0.89 0.15 70 12 4.71 0.07 0.39 5.83

SNB 78.5 0.76 0.40 60 31 17.82 0.30 0.58 1.94

San Bernardo RS 237.8 0.05 0.04 11 9 8.067 0.73 0.90 1.22

SBE 16 16 16 1.00 1.00 1.00

Cartagena PE 176.7 0.07 0.07 12 12 12 1.00 1.00 1.00

PA1 20 20 20.00 1.00 1.00 1.00

PA 20 20 20.00 1.00 1.00 1.00

Total 18 reefs 1781.8 698 466

Mean 118.8 0.45 0.28 38.78 25.89 19.24 0.59 0.73 1.67

SD 47.7 0.24 0.17 16.78 11.31 10.96 0.32 0.25 1.17

aReef abbreviations provided in Table 1.
bNumber of colonies m22.

cNumber of genets m22.

dNumber of colonies genotyped.
eNumber of unique genotypes (genets).
fObserved genotypic diversity.
gRelative contribution of sexual and asexual reproduction.
hGo/Ng, genotypic evenness.
doi:10.1371/journal.pone.0053283.t005

Figure 5. Relationship between colony size and hurricane
incidence in Montastraea annularis populations across the
Caribbean. n= 18 sites.
doi:10.1371/journal.pone.0053283.g005
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recruitment in terrestrial communities [10,20,70,71]. Model

simulations using both seedling and vegetative recruits predict

that disturbance events that disrupt an area no greater than the

dispersal distance of asexually generated recruits promote asexual

recruitment [72]. Whereas, disturbance patches that extend

beyond the distance of clone dispersal enhance sexual reproduc-

tion because asexual recruitment alone cannot efficiently exploit

all the space created for settlement [72]. However, the results

presented here show that increasing levels of disturbance, beyond

the dispersal distance of clones, promote asexual reproduction

within populations of M. annularis. Similar findings have been

observed in populations of the trembling aspen, Populus tremuloides,

where fires were demonstrated to increase levels of asexual

reproduction [19]. Such deviations from the theoretical expecta-

tions of the life histories of clonal organisms may be partially

explained by the varying effects of disturbance. Within populations

Figure 6. Relationship between genotypic diversity (Go/Ge) and physical parameters in Montastraea annularis populations across the
Caribbean. a) Colony Size; b) Hurricane Incidence; and c) Reef Slope. Higher genotypic diversity is associated with a) larger colony size; b) lower
hurricane incidence; and c) gentler reef slope. n = 18 sites.
doi:10.1371/journal.pone.0053283.g006
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of both M. annularis and P. tremuloides the disturbance events

described are predicted to cause a direct proportion of asexual

recruitment through physical fragmentation of colonies [51] and

enhancement of sucker production [19], respectively, whereas

disturbance events within the model simulation are programmed

to result in 100% mortality of both sexual and asexual recruits.

Within the 18 sites investigated here, at least 90% of multi-colony

genets are highly likely to have been caused by physical breakage

and dispersal, thereby reinforcing the idea that hurricanes

promote asexual reproduction in M. annularis.

It is important to note, however, that two sites sampled on the

leeward coast of Curaçao had high levels of clonal structure

despite being in an area with low hurricane incidence. One

explanation for the occurrence of high levels of clonal structure at

these two sites is that Hurricane Lenny passed within 200 miles of

the island in 1999. The hurricane travelled on an unusual

eastward path and 3–6 m high waves were reported to have

pounded the leeward coast of Curaçao for 24 hours causing

widespread damage to the reefs [73]. The effects of Lenny may be

reflected in the clonal structure observed at the two sites in

Curaçao. Furthermore, Curaçao receives relatively fewer sexually

generated larvae as it has less potential upstream donor

populations, and colonies grow so large, due to the absence of

frequent hurricanes, that they fall apart and create clones (Vermeij

pers. obs.). Both of these factors may have contributed to the

unexpectedly high levels of clonal structure observed at the two

sites in Curaçao. Here, genet density was higher than predicted

based on colony density (Fig. 7). Removal of these two sites from

the analysis strengthens our findings, with hurricane incidence

alone then explaining 53% (p= 0.001) of the variation in genotypic

diversity.

Previous studies of marine ecosystems have documented

disturbance regimes as playing a role in determining the pro-

portion of asexual recruitment within populations of clonal

organisms [13,16,60,74,75]. However, they focus on species with

a branching morphology. For example, Coffroth & Lasker [60]

observed a correlation between genotypic diversity in populations

of the gorgonian Plexaura kuna and current and wave action

experienced by each site over an approximate 20 month period.

Hunter [16] also documented a correlation between genotypic

diversity and a combination of chronic and acute disturbance

events in the branching coral Porites compressa. However, the lowest

level of clonality was observed in the most severely or most

recently disturbed populations. Interestingly, a stage-based simu-

lation model identified both hurricane intensity and frequency as

major factors in determining population structure in the branching

coral Acropora palmata [76]. Although, genetic data were unable to

confirm such patterns in the genotypic diversity of A. palmata

populations in relation to hurricanes [15]. While we are not

discounting acute disturbance as an important mechanism of

dispersal in branching corals and gorgonians, it may be that the

effects of such events are masked by more frequent chronic

perturbations such as bad weather or winter storms, as discussed in

Baums et al [15]. The fragile nature of branching morphologies

makes them more susceptible to damage through wave action, and

fragmentation is documented as a regular mechanism of colony

dispersal [8], while in more massive colonies fragmentation may

be restricted to periods of acute disturbance [77,78]. In addition,

particularly severe disturbance is likely to generate fragments from

branching corals that are smaller than the critical size required for

survival [79], whereas the robust columnar morphology of M.

annularis colonies is more likely to give rise to larger fragments with

a greater chance of survival.

The number of clonemates observed at a site was also related to

the gradient of the reef slope. Sites on steeper reef slopes had

a larger proportion of clonemates than those sites on more gentle

slopes. Again, this is in contrast to findings in A. palmata where

populations on gentler slopes were more clonal than populations

on steeper slopes [15]. Baums et al [15] suggested that A. palmata

Table 6. Results of linear mixed effects models testing the effects of physical parameters on genotypic diversity (Go/Ge) in 18
populations of Montastraea annularis across the Caribbean.

Model Predictors Model Coefficient (b) T p dfa F pb r2

1 Constant 1.01 10.55 ,0.001* 2, 15 13.16 ,0.001* 0.64

Hurricane Incidence 20.03 23.95 0.001*

Slope 20.08 23.95 0.001*

2 Hurricane Incidence 20.02 22.37 0.031* 1, 16 5.62 0.031* 0.26

3 Slope 20.07 22.36 0.031* 1, 16 5.59 0.031* 0.26

4 Colony Size 0.37 3.55 0.003* 1, 16 12.59 0.003* 0.44

aDegrees of freedom.
bAssociated probability.
*Significant at p,0.05.
doi:10.1371/journal.pone.0053283.t006

Figure 7. Relationship between colony density and genet
density in Montastraea annularis populations across the Carib-
bean. Highlighted are the two sites at Curaçao. n = 18 sites.
doi:10.1371/journal.pone.0053283.g007
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fragments maybe lost from populations on steeper slopes at higher

frequency. Size, shape and weight differences in fragments from

columnar or massive colonies versus fragments from branching

colonies may contribute to the observed contrasting patterns. In

M. annularis, populations on steeper slopes may have higher

asexual recruitment than those on more gentle slopes due to the

moderating influence of slope on the impact of hurricane-induced

waves. Waves generated by hurricanes have been observed to be

larger and cause more damage to reefs on steeper slopes than on

more gentle slopes [62,63,80]. Steeper reef slopes cause a sudden

change in storm swells from deep water waves to shallow water

waves, with little energy loss due to bottom friction, resulting in

steep waves plunging vertically down on the reef causing extensive

damage [63,80]. On gentler sloping reefs, the change in water

depth is less abrupt thereby increasing bottom friction, wave set-up

is decreased and consequently the energy reaching the reef is

reduced [81,82]. In addition, an avalanche effect is created on

steeper reefs whereby colonies near the top of the slope are

uprooted or fragmented and cascade down the reef creating

further damage, whereas on more gentle slopes many uprooted or

fragmented colonies remain in place [83]. The avalanche effect

may further increase the proportion of asexually generated

offspring observed on reefs as fragments of colonies on steeper

slopes are more inclined to move apart from the parent colony

compared to fragments on a very gentle or flat reef. Here,

fragments may be retained around the parent colony and later fuse

to reform a single colony. Furthermore, steeper slopes may also

promote survivorship of fragments by reducing sediment accu-

mulation during storms.

The size distribution of colonies differed significantly among the

18 sites with clonemates being on average 70% smaller than non-

clonemates. Furthermore, 26% of the variation in colony size was

explained by hurricane incidence, with those sites that experienced

more hurricanes having smaller colonies. Despite an extensive

review of the literature we found no evidence to support a region

wide variation in M. annularis growth rates consistent with latitude.

The nature of clonemate formation, through fragmentation or

partial mortality of the parent colony, is likely to result in colonies

of a smaller size. Such differences in colony size were not observed

in branching coral species, where clonemates and non-clonemates

were documented as being similar in size [15,16]. The faster

growth rates of branching coral species may account for this lack

of difference in size as fragments may quickly reach the average

colony size within a population between successive disturbances.

In contrast, M. annularis has a much slower growth rate, typically

,10 mm yr21 [44], thereby preventing fragments from rapidly

increasing in size and thus maintaining a large difference in the

size of clonemates and non-clonemates. Populations in which

clonemates are significantly smaller than non-clonemates have

been observed in the deep sea coral, Lophelia pertusa [18]. The

smaller size of clonemates in L. pertusa was also linked to a reduction

in fecundity [18]. However, the mean size of M. annularis

clonemates in this study was much larger than the minimum size

required for reproduction [84]. Nevertheless, corals have been

reported to forgo sexual reproduction when subjected to stressful

conditions such as bleaching or partial mortality [85,86]. Thus,

predicted increases in the frequency and severity of hurricanes

[35,36] could further reduce the ability of M. annularis populations

to generate sexually produced larvae.

Remnant populations are described as those that persist through

extended time periods, despite a negative population growth rate,

due to long-lived life stages and life history characteristics buffering

unfavourable environmental conditions and variability [87,88].

Such life history characteristics include a high proportion of local

asexual recruitment and high longevity of individuals within the

populations [88]. Limited sexual recruitment within such popula-

tions may restrict recovery from disturbance and prevent

colonisation of new habitats. Thus, current populations will

decline at a rate determined by the longevity of existing individuals

[87] in the absence of recruitment. Populations ofM. annularis have

declined in cover and abundance in recent decades with limited

signs of recovery suggesting that growth rates [89,90] and

previously rare larval recruitment events are being increasingly

inhibited by environmental changes on reefs [52,91]. Size-based

demographic models were used to predict trajectories of popula-

tion growth for current M. annularis populations at St. John, US

Virgin Islands [43]. The models predicted that current popula-

tions, with no further sexual recruitment, would be extirpated

within 50 years. Moreover, populations may have declined to such

an extent that even low sexual recruitment rates, typical of M.

annularis populations, or the use of storage effects will be unable to

sustain current population levels [43].

We demonstrate here that asexual reproduction occurs at

varying frequency across the species-range and significantly

contributes to the local abundance of a columnar, reef-building

coral, providing further support to previous studies of asexual

reproduction in M. annularis [8,51,52]. Large-scale disturbances

combine with local habitat characteristics to shape the balance

between sexual and asexual reproduction in populations of M.

annularis. Although only 18 reefs were sampled in the current

study, similar results would be expected across the remainder of

the Caribbean. Reefs impacted by a greater number of hurricanes,

such as those in the north and east of the basin, would be expected

to have a greater proportion of asexual reproduction within the

population. Reefs similar to those observed in Colombia, with low

densities of large, solely sexual colonies, are likely to be rare.

Increasing levels of disturbance across the Caribbean may shift

the balance further towards asexual reproduction resulting in

stronger genet level selection. Long-term consequences may

include increasingly isolated populations due to lower levels of

dispersal of sexual propagules. A recent study of gene flow patterns

in M. annularis across the Caribbean demonstrated that popula-

tions were genetically differentiated at a basin-wide scale, with

discontinuities distinguishing populations in the eastern and

western Caribbean and isolating the Bahamas [92]. Interestingly,

distance was shown to be a poor predictor of gene flow in M.

annularis suggesting that fine scale processes, such as larval life

history traits, may significantly influence dispersal distances [92]. A

shift towards a reliance on asexual reproduction may result in

further reductions in gene flow among populations, with a sub-

sequent loss of genetic diversity.

Asexual recruitment is clearly an important mechanism

influencing the population structure of M. annularis. Our findings

demonstrate that M. annularis can withstand acute disturbances,

such as hurricanes, which would otherwise significantly reduce

population density. Given the environmental and ecological

changes occurring across the reefs of the Caribbean, this

alternative method of recruitment may help buffer the adverse

effects of utilising storage effects by generating offspring with

significant advantages over sexual recruits. Recruits generated by

fission or fragmentation (clonemates) are substantially larger than

sexual recruits, and being raised above the substrate, may have

a greater chance of survival because they are less subjected to

sediment abrasion and algal competition [93]. Nevertheless,

dependence on asexual methods of recruitment at the expense of

sexual reproduction may have deleterious effects on the ability of

M. annularis populations as a whole to adapt to climate change.

Sexual populations can potentially evolve at a faster rate than
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asexual populations because beneficial mutations can be readily

combined into an individual through sexual recombination [28].

Furthermore, sexual populations may be more tolerant of biotic

stress through resistant genotypes already present in the genetically

diverse population [94]. Future studies of the effects of climate-

driven thermal and radiative stress on the coral/zooxanthellae

holobiont [95] may need to consider a trend of reduced capacity

for genetic diversification in some foundation coral species in the

forthcoming decades.
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