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Abstract

This project uses a combination of different measuring techniques

to investigate the distribution and size of Suspended Particulate Matter

within the lower reaches of the Tamar Estuary and Plymouth Sound.

Data of particle concentrations and sizes, along an ebb and flood

transect of the lower Tamar estuary, are presented and analysed.

Expected trends of a reduction in particle concentration towards the

mouth (from 7mg.L-1 to 5mg.L-1) were detected. A decrease in parti-

cle size from 170µm furthest upstream, to 140µm near the mouth, was

also observed. Significant relationships between particle size and or-

ganic concentration were found, with correlation coefficients of r = +0.5

during ebb conditions and r = +0.7 during flood conditions. Analysis of

data obtained from digital holography highlighted the complex struc-

ture of flocculated particles, as well as allowing for the identification of

anomalies found in LISST data. It is suggested that better shape pa-

rameterisation is required when determining particle size using LISST

instruments.
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1 Introduction

Determining the size, shape and distribution of Suspended Particulate Matter

(SPM) within the water column is important for several reasons. Suspended

particles affect light penetration through the water column, leading to changes

in primary productivity rates (Irigoien & Castel 1997). They can also influence

the way in which sound propagates through water due to reflection, affecting the

performance of sonar equipment (Richards et al. 1996). The distribution of pol-

lutants is directly affected by the distribution of SPM because many pollutants

attach to the surface of particles and are therefore distributed in the same way as

SPM, rather than as a dissolved substance within the water column (Gentien et al.

1995, Jackson et al. 1997, Perillo 1995). Understanding the distribution of organic

carbon, (which may be in the form of Particulate Organic Carbon (POC)) and how

it sinks from the atmosphere to the ocean floor, is a key stage in the carbon cy-

cle (O’Neill 1998). This could have implications on large-scale climate prediction

models. The main route by which terrestrial material is transported from land to

ocean is through estuaries in the form of SPM (Perillo 1995). There are many

different types of estuary, each with a wide variety of processes that affect the

dynamics of SPM within the region (Perillo 1995).

This project aims to use a combination of different measuring techniques to in-

vestigate the physical processes affecting the distribution and size of SPM within

the lower reaches of the Tamar Estuary and Plymouth Sound.

The project objectives are to:

• Collect accurate primary data of the following from the Tamar Estuary and

Plymouth Sound:

– Density structure

– Current structure

– Particle size and distribution

• Identify and explain the following physical processes affecting the distribu-

tion and size of SPM:

– Temperature, salinity and density variation

– Currents and turbulence

– Flocculation

• Compare the results of particle size and distribution with that of similar stud-

ies found within the literature.
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2 Background

2.1 Estuarine Classification and Processes

Estuaries can be classified in many different ways to help compare different types

of environment and the processes that occur within them. The choice of classifi-

cation will vary depending on the nature of the processes being investigated.

Davies (1964) created classifications based on tidal range. The following cat-

egories were used: Microtidal (tidal range less than 2m); Mesotidal (2-4m tidal

range); Macrotidal (4-6m tidal range); and Hypertidal (tidal range greater than

6m). This work was extended by Nichols & Biggs (1985) to create a classification

that would combine morphological and tidal effects. This resulted in three cate-

gories based on the equality between convergence (as the estuary narrows) and

friction: Hypersynchronous (convergence exceeds friction, leading to an increase

in tidal amplitude towards the head of the estuary); Synchronous (convergence

and friction are in equilibrium with tidal forces, causing tidal amplitude to remain

constant towards the head of the estuary); and Hyposynchronous (friction ex-

ceeds convergence, resulting in a decrease in tidal amplitude towards the head

of the estuary).

Pritchard (1952) published classifications based solely on topography. Again,

three classifications were made: coastal plain estuaries, fjords and bar-built estu-

aries. Davies & Hayes (1984) produced a classification that considered whether

waves or tides had the greatest influence on the shoreline, which was later devel-

oped by Dalrymple et al. (1992) who related the tide, waves and river flow, giving

the categories of: deltas, estuaries, strand plains and tidal flats. The need for

more quantitative classifications started to develop after work by Pritchard (1955)

and Cameron & Pritchard (1963), which led to three main estuarine classifica-

tions based on salinity structure: highly stratified (includes salt wedge and fjord

estuaries), partially mixed and homogeneous.

Estuaries that are partially mixed (partially stratified) have a lower river flow

than that of more highly stratified estuaries. Therefore, the influence of the tide

is stronger so they are often classified as mesotidal according to Davies (1964).

The combination of this relatively large amount of tidal energy and bottom friction,

leads to a turbulent, two-layer current structure throughout the water column, with

bottom friction being the dominant factor in internal mixing. As a result, mixing by

both entrainment and turbulent mixing occurs. Entrainment is found in conditions

where Richardson numbers exceed 0.25 (Dyer 1997). It is a one-way mixing

process that causes saline water to diffuse upwards at the halocline. Turbulent

mixing is a two-way mixing process at the halocline, involving breaking waves

(known as Kelvin Helmholtz Billows) that occur when Richardson numbers are

less than 0.25 (Dyer 1997). Salinity increases with depth and also longitudinally
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towards the mouth of the estuary (Dyer 1997, Uncles et al. 1985a,b, 1986). The

salinity structure often changes greatly along the length of the estuary, with more

stratified water near the head, due to limited depth and increased river flow, and

well mixed water near the mouth, as a result of higher velocities (Dyer 1997).

Tamar Estuary

Figure 1: Sketch map of the Tamar Estu-
ary showing the study area in blue, Weir
Head at the head of the estuary, and Ply-
mouth Sound at the mouth.
(Adapted from Grabemann et al. (1997)).

A classification system based on the

relationship between the circulation pa-

rameter and the stratification parameter,

that would allow a quantitative descrip-

tion of the types of estuary described

by Cameron & Pritchard (1963), was pro-

posed by Hansen & Rattray (1966). The

circulation parameter is the ratio of the

net surface current and the mean cross-

sectional velocity, and the stratification

parameter is the ratio of surface to bot-

tom salinity and the cross-sectional aver-

age salinity (Hansen & Rattray 1966).

The Tamar Estuary (Figure 1) is a

partially mixed and flood dominant estu-

ary with tidal ranges of between approx-

imately 2m and 6m (Uncles et al. 1985a)

(This is mesotidal/macrotidal according

to the Davies (1964) classification). Ac-

cording to the work of Grabemann et al.

(1997), the total length of the estuary

from Weir Head to Plymouth Sound is

31km (Figure 1) and the average river

discharge is 22m3.s-1 (Dyer 1997).
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2.2 Suspended Particulate Matter

There are many different forms of SPM within the water column. They range in

size from colloids (particles that are so small they are almost dissolved) of about

1µm, to organisms that could reach several metres in length (Jackson et al. 1997).

The rate at which a particle falls through the water column is determined by

its settling velocity (also known as the fall velocity). Stoke’s Law can be used

to relate the diameter of a particle and its settling velocity, assuming spherical

particles of specific sizes and densities (British-Standard 1989). Estuaries are

generally regions of high velocities, and as a result, SPM concentrations are high

(Perillo 1995). Small scale turbulence within the water column disrupts the pas-

sive settling of particles described by Stoke’s Law (Jackson et al. 1997) and can

increase settling velocities by anything up to 50% (Thorpe 2005). However, little

is currently known about the structure of this small scale turbulence. It is possi-

ble to express particle size distribution by using the particle size spectrum, which

describes the distribution of particles in a volume of water as a function of their

sizes (Jackson et al. 1997).

The size of a suspended particle changes as other particles may become at-

tached to one another through a processes known as flocculation, or sections

may break off (floc breakup). This process of flocculation and floc breakup can

occur due to a number of different reasons, including: turbulent shear, differen-

tial settling (aggregation of particles onto a floc as it falls through the water col-

umn), suspended sediment concentrations, and the presence of extra-polymeric

substances (EPS) (Fugate & Friedrichs 2003, Kitchener 1972, Manning & Dyer

2002). Electrostatic charges on the surfaces of particles (Dyer & Manning 1999)

and salinity (Fugate & Friedrichs 2003) are also other factors that affect floccula-

tion, although are less likely to be influential within an estuary such as the Tamar.

This is because flocculation increases with increasing salinity but reaches an

equilibrium at a salinity of approximately 5-10 PSU, which is much lower than

the typical salinities of between 30-35 PSU expected in the mouth of the Tamar

(Uncles et al. 1986).

The majority of SPM in the open ocean is of organic origin, such as phyto-

plankton cells. The concentration of inorganic particles increases in nearshore

regions due to discharge of clays, silts and sand from rivers (Bowers & Binding

2006, Hill et al. 2000, Perillo 1995). This would suggest that the ratio of inorganic

to organic SPM would decrease from the head of an estuary to its mouth. This is

likely to increase flocculation as the surfaces of organic particles have convoluted

chains of sticky polymers (EPS) that, when brought into contact with another or-

ganic particle, bond together to form a larger floc. As a result, the average particle

size will increase and the floc shape will become more complex (Manning & Dyer

2002). This increases the fall velocity of the particle, causing it to be more likely to
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fall out of suspension. However, the density of these flocs is relatively low, lead-

ing to a decrease in the effective density (the difference between the floc density

and water density) and as a result, the fall velocity is less than that of a typical

inorganic particle of the same size (Dyer & Manning 1999).

There are three modes of sediment transport relevant to a study of SPM dis-

tribution in estuaries: wash load, suspension and bedload (Perillo 1995). Wash

load consists of particles with a very low fall velocity, that are kept in suspension

by turbulence. As a result, a vertical profile of wash load concentration is ho-

mogeneous within the regions of sufficiently high turbulence. Suspension mainly

occurs as a result of erosion from the bed, when the friction velocity is approxi-

mately equal to 80% of the settling velocity. Bedload is the transport of sediment

with high fall velocities, along the bed through processes such as saltation. This

is often a cause of bedforms such as dunes and ripples. Sediment with grain

sizes less than 150µm will be brought into suspension as soon as they start to

move, whereas grain sizes greater than 150µm will be transported as bedload

before moving into suspension (Perillo 1995).

2.3 Currents and Turbulence

The distribution of SPM in estuaries is affected by water motion, which is a com-

bination of river discharge and tidal variations, as well as the smaller effects of

turbulence found at boundaries within the water column (Uncles 1990). These

boundary locations where turbulence is found include: the sea surface, the pycn-

ocline, areas of high velocity shear and the bottom boundary layer. Vertical and

horizontal forces are important when studying estuarine sediment dynamics. The

flow of dense water beneath less dense water due to horizontal density gradi-

ents, results in vertical forces in the form of vertical gravitational circulation (Dyer

1997). The horizontal forces are in the form of tidal pumping, which is the tidally

averaged transport of salt due to changes in velocity, salinity and water depth over

time (Dyer 1997).

Both vertical gravitational acceleration and tidal pumping are the two main

important processes in the transport of sediment in partially mixed estuaries, such

as the Tamar (Allen et al. 1980, Uncles et al. 1985b, 1986). Uncles (1990) states

that the upper reaches of the Tamar experience a net landward transport of SPM,

which occurs during the flood tide. This is due to the asymmetry of the tide, which

increases towards the head of the estuary to a point where river flow becomes

too strong. This point is located upstream of the salt intrusion, and as a result,

suspended sediment is pumped towards the head of the estuary. (Dyer 1997).

This contributes to the formation of a turbidity maximum, which is an area of

high concentrations of SPM, and is often located near the head of an estuary. In

the case of the Tamar, the turbidity maximum is found in the low salinity water
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near Weir Head (Figure 1). Vertical mixing increases further down the estuary

causing a reduction in stratification and an exchange of particles into the lower

layer, highlighting the importance of mixing on the vertical distribution of SPM

(Dyer 1997, Fugate & Friedrichs 2003, Stemmann et al. 2002). At this point there

is likely to be a combination of sediment being transported seaward and sediment

being transported up the estuary from tidal input (Dyer 1997).

Results from Stemmann et al. (2002) and Fugate & Friedrichs (2003) have

shown that the amount of mixing within the water column has an important effect

on the vertical distribution of SPM. Jackson et al. (1997) suggested that this may

be, in part, due to the different physical processes that affect particles of different

sizes. For instance, small particles are influenced more heavily by molecular dif-

fusion and large particles may be affected by turbulent shear. This highlights the

importance of particle size and its interactions with the environment.

The Turbulent Kinetic Energy (TKE) dissipation rate (ε) is often used to char-

acterise turbulence. It is the rate of loss of kinetic energy to heat, due to viscosity.

This has an effect on the size of turbulent motions, which is expressed using the

Kolmogorov microscale. The Kolmogorov microscale is the smallest size that a

turbulent eddy can be before viscosity has an effect. It is a function of the TKE

dissipation rate and molecular viscosity, as shown below:

lK = (ν3/ε)1/4 (1)

Where ν is the molecular kinematic viscosity. Higher TKE dissipation rates

therefore lead to smaller Kolmogorov microscales (Thorpe 2005).

Fugate & Friedrichs (2003) studied the relationship between turbulence and

particle size in three estuaries with different amounts of TKE, using a profiling

acoustic Doppler velocimeter. It was found that surface particle dynamics were

affected by irregular advection events. In mid-depth, high TKE conditions, small

Kolmogorov microscales reduced particle size due to floc breakup. Stratified,

low TKE regions allow differential setting to increase particle size. Suspended

sediment distribution in mid-depth regions of the lower TKE areas was controlled

by irregular resuspension and trapping at the pycnocline. Resuspension was the

main control on suspended particle size and distribution within the bottom layers

of the three estuaries.
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2.4 Techniques & Instrumentation

A large range of methods have been used for determining the size and distribution

of SPM. Some involve in situ measurements, while others require further labora-

tory analysis of water samples. For example, British-Standard (1989) described

methods for determining particle size by passing water samples through different

sized filters, then drying and weighing the filters, to determine the percentages

of different particle sizes and concentrations, whereas Jackson et al. (1997) used

a variety of in situ measurements, such as photographic camera systems and

various video techniques. The fragile nature of flocs that contribute to a large

proportion of SPM within estuaries, means that reliable in situ measurements are

vital for the accurate representation of SPM dynamics (Bate & Morris 1987, Bale

1996, Eidma & Kalf 1996).

Various acoustic techniques have been reviewed by Thorne & Hanes (2002).

Acoustic devices usually only measure particles down to a diameter of about

25µm and assume a spherical shape but are capable of measuring relatively large

particles more accurately than most optical techniques. The Acoustic Doppler

Current Profiler (ADCP), for example, is designed for measuring currents through

acoustic backscatter from suspended particles, but can also give an intensity of

backscatter proportional to the concentration of suspended particulate material.

Optical Backscatter Sensors (OBSs) are commonly used in determining con-

centrations of SPM within a water column. They measure the amount of light

reflected by particles within the water column (in an arbitrary unit), which can be

calibrated to give a concentration of SPM. Various errors associated with using

sensors of this nature were studied by Bunt et al. (1999), and include: the shape

and roughness of particles may cause significant over-estimations of particle size;

particle flocculation and air bubbles may increase the response of the OBS by up

to two times; plankton may increase the response of the OBS by four times.

Bale (1996) and Agrawal & Pottsmith (2000) described the way in which a

LISST (Laser In Situ Scattering Transmissometer) uses the principles of laser

diffraction to measure particles. The instrument is set up so collimated laser

light passes through the sample volume onto a receiving lens. A specially made

detector, positioned at the focal plane of the receiving lens, receives a focused

diffraction pattern caused by small particles within the sample volume. The angle

at which a ray is diffracted by these small particles is proportional to the radius

of its diffraction pattern on the detector. This radius increases logarithmically as

the diffraction angle increases. The optical power distribution on the ring detec-

tor gives the essential information on particle size distribution within the sample

volume. For example, large particles cause a peak in optical power at small an-

gles. The inversion of power distribution sensed by the rings produces an area

distribution of particles. The volume distribution of particles is obtained from the
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area distribution, by multiplying the area in any size class by the median diameter

in that size class. The total volume concentration in the sample can then be ob-

tained by summing the volume distribution. One disadvantage of this technique

is that it assumes spherical particles when calculating sizes (Lynch et al. 1994),

which could lead to significant errors as most organic SPM is very variable in

shape and form. A study by Mikkelsen et al. (2005) compared the use of LISST

instruments with a particle imaging system and found that the LISST had a ten-

dency to underestimate sizes. The application of in situ measurements made by

LISST instruments and other laser techniques in estuaries has been investigated

in a number of studies, including those of Bate & Morris (1987) and Law. et al.

(1997).

Schlieren is a phenomenon that occurs due to a combination of strong den-

sity gradients and turbulence that cause changes in the refractive index of a fluid

(Mikkelesen et al. 2008). This has proved to be a problem when using many of the

light-dependent, in situ techniques described above. A number of studies have

reviewed the effect of density stratification on the performance of LISST instru-

ments, and concluded that density stratification produces similar results to areas

of high particle concentration (Mikkelesen et al. 2008, Styles 2006). Systems that

measure particle characteristics from images also encounter the same problems.

However, the areas in which schlieren has significant influence can be identified,

and the associated measurements can be discarded.

A number of recent techniques that collect images of particles in situ, have

been used to try and quantify accurate SPM characteristics. For instance, the In

Situ Particle Imaging Device (InSiPID) uses CCD video cameras and digital im-

age processing algorithms to measure particle size and shape (Benson & French

2007). Other studies that evaluate the use of camera systems for measuring

SPM include that of: Dyer et al. (1996), Eidma & Kalf (1996), Knowles & Wells

(1996), Maldiney & Mouchel (1996), Milligan (1996), VanLeussen & Cornelisse

(1996) and Syvitski & Hutton (1996).
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2.5 Future Developments

A vast amount of research has been conducted on the sediment dynamics that

relate to the turbidity maximum within specific estuaries (which are often located

towards the upper limit of the salt intrusion), as well as sediment fluxes of organic

and inorganic particles between oceans and estuaries. However, little is known

about the sediment fluxes of particles of different shapes and the relationship

between particle shape and composition. This could be of vital importance when

modelling the distribution of pollutants if, for instance, a specific pollutant was only

found on particles with specific characteristics.

Turbulence has been studied in great detail at various important locations such

as the bottom boundary layer and strong density interfaces. The relationship

between suspended particle dynamics and turbulence has been a recent area of

study. However, there is a lack of knowledge on the exact relationship between

the Kolmogorov microscale and suspended particle dynamics.

The techniques used for measuring particle size and concentration are varied,

each with their own associated errors. The effect of schlieren on the reliability of

optical instruments has been identified and led to the development of instruments

that measure particles through the use of images. The effect of particle shape on

sediment dynamics has had little attention within the literature, and may be of sig-

nificant importance because of the difference in characteristics between organic

particles and inorganic particles. The reason for this is likely to be due to the lack

of resolution of current instrumentation and that there appears to be no instrument

that is capable of measuring particle characteristics in three dimensions.
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3 Methodology

3.1 Collection of Data

Ebb and flood transects of the Tamar Estuary and Plymouth Sound were surveyed

on 19/06/08. The transect started with Station 1 at the area of The Tamar Bridges

and finished close to Duke Rock, near the Eastern entrance of Plymouth Sound. It

consisted of 15 sample stations, approximately 0.5km apart, as shown in Figure

2. The exact distance between stations varied slightly due to hazards such as

Devonport dockyard and chain ferries. The chosen positioning of the transect

was determined by studying the tidal stream atlas of Plymouth Sound (Admiralty

n.d.). It followed the strongest tidal flows through Plymouth Sound and The River

Tamar. For tidal heights and times at each station see Figure 25 in Appendix A.

Figure 2: Admiralty chart showing the locations of each station along the transect.

At each station the following samples were taken:

• CTD profile - (conductivity and temperature - allowing the calculation of wa-

ter density)

• DIGIHOLOCAM (Digital In-line Holographic Particle Imager) profile - (parti-

cle size, shape and concentration)

• LISST-100 C profile - (particle size distribution)

• OBS (optical backscatter) profile - (particle concentration)
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• Fluorometer profile - (chlorophyll concentration)

• Surface water sample - (concentrations of organic and inorganic particles)

The CTD, Fluorometer, OBS, LISTT-100 C, and DIGIHOLOCAM were attached

onto a single frame (Figure 3) to allow the sensors to be as close to each other

as possible in order for them to be recording within the same area. The maximum

depth of each profile was approximately 1m above the bed.

Figure 3: CTD, OBS, Fluorometer, LISST-100 C and DIGIHOLOCAM on the profiling
frame.

Three surface water samples were taken at each site to allow calibration of

optical and acoustic backscatter instruments. Ideally, repeats of ebb and flood

transects over a number of days or months would have allowed the data to be

tidally averaged. However, this was not possible due to the time that the equip-

ment was available for. It would have been beneficial to take water samples at the

surface, mid-depth and near the sea bed. However, the boat used did not have

the capacity to carry the amount of water that would have been collected.

A ship-mounted 1200kHz ADCP was running continually to record current ve-

locity and acoustic backscatter intensity. This allowed relationships between cur-

rent flows, turbulence and the distribution of suspended particles to be examined,

as well as a comparison between acoustic and optical backscatter.

The filtration of the water samples was carried out using standard filtration

methods, as described in section 3.3.
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3.2 Instrumentation

3.2.1 1200kHz ADCP

The ADCP (Acoustic Doppler Current Profiler) produces an instantaneous veloc-

ity profile of the water column, which can then be presented in a graphical form

to allow analysis of the current features measured. TKE dissipation can also be

calculated using a structure function technique proposed by Wiles et al. (2006),

to allow a comparison between particle characteristics and turbulence.

The ADCP emits pulses of sound from a number of transducers on the in-

strument (usually 4). The sound pulses are then reflected off scatterers in the

water column, allowing the speed of the scatterer to be calculated. It is, however,

assumed that the scatterers used to calculate current speeds move at the same

speed as the water.

During the transect of the Tamar the movement of the boat over ground was

removed from the initial velocities recorded by the ADCP, through bottom-tracking.

Possible sources of error can occur in rough weather if the transducers are

too close to the water surface because a large amount of bubbles are created

by breaking waves. This increases the backscatter from the ADCP and produces

noisy data in the surface layer. Also, there is often a decrease in accuracy near

bottom of the profile due to the high reflectivity of the bed. In order to compensate

for these two errors, the ADCP was positioned at a depth where there would be

minimal interference from surface bubbles but also as close to the surface as

possible, and the lowermost layer of the profile was removed. The ADCP was

also changed from mode 12 to 1 during rougher conditions to compensate for

greater boat movements from waves.

3.2.2 CTD

A CTD measures conductivity, temperature and pressure. Salinity was calculated

from conductivity and temperature, allowing density to then be calculated with

salinity and temperature.

3.2.3 OBS

The OBS (Optical Backscatter) sensor measures the amount of backscatter from

all particulate matter within the water column. This allows a comparison between

the optical backscatter and the concentration of total suspended solids (TSS)

obtained from the filtration of surface water samples (Section 3.3). This then

allows for the response from the OBS to be calibrated to give the associated

concentration of SPM in mg.L-1, as shown in Appendix C.

The main error associated with OBS sensors is that anything within the water

that scatters light (e.g. a bubble of air) will be recorded as a particle, in a similar
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way to the ADCP.

3.2.4 Fluorometer

The Fluorometer measures fluorescence from particles containing chlorophyll - a.

Again this can be calibrated against the filtration of surface water sample (Section

3.3) to give an indication of the concentration of particulate organic matter (Ap-

pendix C). However, there are discrepancies associated with this comparison as

not everything that combusts during the filtration process will also fluoresce.

3.2.5 LISST-100 C

LISST (Laser In Situ Scattering and Transmissometry) sensors measure particle

size and concentration using the principles of laser diffraction (Agrawal & Pottsmith

2000). This is the principle that as collimated light is shone through a sample vol-

ume containing particles, the light will diffract around each particle at an angle

that is proportional to the size of the particle. After being passed through a fo-

cussing lens, these diffraction patterns are focused onto a ring detector. Light

intensities at specific locations on the ring detector are therefore proportional to

the concentration of particles of a certain size.

The LISST assumes that all particles in the sample volume are near-spherical.

It has also been suggested that LISST instruments are not reliable when under

the influence of schlieren, which is a phenomenon caused by density differences

within the water causing light scattering (Mikkelesen et al. 2008).

3.2.6 DIGIHOLOCAM

The DIGIHOLOCAM (Digital In-line Holographic Particle Imager) (Figure 4) uses

the same principles of laser diffraction as the LISST but the ring detector and

focussing lens in the LISST are replaced by a video camera that records holo-

graphic images. The holographic images can be digitally analysed to identify the

size and shape of individual particles within the sample volume.

One of the advantages of using digital holography to examine particles is that

possible causes of anomalies can be identified from the images. For example,

a Copepod may appear as an unusually large particle and would not be able to

be identifiable by instruments such as a LISST. It could, however, be identified

clearly on a hologram, as shown in Figure 5.
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Figure 4: The DIGIHOLOCAM in a laboratory test tank. (Nimmo-Smith 2008)

Figure 5: A Copepod identified from a hologram. Grid spacing = 0.2mm. (Nimmo-Smith
2008)

3.3 Filtration

The filtration of surface water samples was carried out using the standard filtra-

tion techniques described in this section.

In order to avoid contamination, forceps were used to handle filters and each

filter was stored in a clean packet for transportation and heating.

1. Filter preparation:

Each filter was rinsed three times with 50ml of Milli-Q water and combusted

at 450oC for 4hours. The filters were then weighed using an analytical bal-

ance.

2. Water sample collection:

There were two approaches taken to this aspect of the method. Three sur-

face water samples were collected at each station and stored in bottles

for filtration the following day for Method A. Filtration was carried out three

times for each water sample and the sample bottles were kept cool to re-

duce growth of organic matter. Method B consisted of only one filtration per

sample but was carried out immediately after the sample was collected.
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3. Filtration:

50ml of Milli-Q water was past through the filter to allow the filter to stick

to the frit (Figure 6) before a known amount of sampled water was filtered

(approximately 1 litre). The filter was then rinsed a further 3 times with 50ml

of Milli-Q to wash any remaining water sample through the filter.

4. Total suspended solids:

After filtration the filters were dried at 80oC for 16hours and weighed. The

difference in weight between the dried filter and the initial filter weight was

divided by the amount of water sample filtered and multiplied by 1000 to

produce a result in mg.L-1.

5. Organic matter:

The filters were then combusted at 450oC for 4hours in order to remove any

organic matter on the filter. The filters were re-weighed to allow the concen-

tration of organic matter (in mg.L-1) to be calculated from the difference in

weight between the dried and combusted filters.

Figure 6: Filtration manifold set-up.
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Figure 7 shows the colour change of the filters after each stage of filtration.

The combustion process resulted in a change from green to brown, which can

be seen when comparing Figures (b) & (c). This is due to the green colours

associated with organic substances being burned during the combustion process,

leaving the brown colour of the inorganics to be left on the filter. As the same

volume of water sample was passed through all the filters shown in Figure 7, It is

clear from the intensity of colour on each filter, that a larger concentration of SPM

was present on the filters on the right compared with those on the left.

(a)

(b)

(c)

Figure 7: (a) Filters before drying. (b) Dried filters. (c) Combusted filters. The filters
on the left were from Station 15 (Plymouth Sound) and the filters on the right were from
Station 1 (Tamar Bridges) (see Figure 2).
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4 Results and Discussion

4.1 Salinity, Temperature & Density Structure

Figure 8: Distributions of temperature, salinity and density along the ebb (a) and flood
(b) transects.

Table 1: Summary of mean salinities, temperatures and densities.

Ebb Flood Tidally-averaged

Mean Salinity (PSU) 33.72 33.72 33.72
Mean Temperature ( oC) 14.5 14.7 14.6
Mean Density (kg.m -3) 1025.9 1025.9 1025.9

Figure 8 and Table 1 show that salinity increased towards the mouth and with

depth. The flood tide caused an increase in salinity towards the mouth but did

not change the mean salinity of the transect because the range of salinities de-

creased.

Temperature decreased with depth and towards the mouth. The mean tem-

perature was lower during the ebb transect. Temperature in the surface layers

and upper half of the transect are greater on the flood tide. This is likely to be

as a result of an increase in air temperature over time because the flood transect

was carried out in the afternoon.

Salinity had a greater effect on density than temperature and, as a result,

density followed a similar pattern to that of salinity. There are some areas where

temperature does cause differences, for example, the high temperatures between

1 and 2km downstream of station 1 in the flood transect.

These results are characteristic of a typical partially mixed estuary described

by Dyer (1997) & Uncles et al. (1986).
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4.2 Hydrodynamics

Figure 9: ADCP current velocities recorded on the ebb (a) and flood (b) transects. Posi-
tive along-flow velocities indicate current flowing in-line with the river flow (i.e. from source
to mouth). Positive cross-flow velocities indicate current flowing at 90◦ to the right of the
river flow and negative velocities correspond to current flowing at 90◦ to the left. Current
directions shown are rotated to be in-line with the depth contours in the area of each
station and the velocities were averaged over the time spent at each station (Appendix
E).

Along-flow currents were faster in the ebb transect, with a mean flow of 0.37

m.s-1 compared to the -0.03 m.s-1 mean flow in the flood transect. Reduced

velocities can be seen in areas near the bed (black line), for example in the ebb

transect between 2 and 3km from Station 1. Faster cross-flowing currents were

present in the flood transect as well as larger deviations in current direction from

the orientation of the estuary channel. This is likely to be due to the sinuosity and

convoluted shape of the estuary channel. The high positive cross-flow velocities

between 5 and 7 km downstream of Station 1 during the flood transect are likely

to be due to the inflowing water filling the tidal lake to the west of the stations in

the area. Larger fluctuations in current speed were also present during the flood

transect. The tidally-averaged velocity for the area was +0.17m.s-1, suggesting

ebb dominant flows.

The area known as “the narrows” is situated between 7.5 and 8km down-

stream of Station 1 (Figure 2). This is a narrow channel that effectively creates

a bottleneck in the estuary. Here, strong along-flow currents were recorded dur-

ing the ebb transect. During flood conditions, very fast surface flows and near-

stationary flows in the lower half of the water column were recorded in the di-

rection of the channel (along-flow). In the area of the water column where the

slow along-flows were recorded there were high positive cross-flows. This sug-

gests that the water flowing from west to east around the North of Drake’s Island

(Figure 2) had not been substantially influenced by the topography surrounding

the area. This may be because of the much deeper water shown by the ADCP

bottom tracking (black line on Figure 9).
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4.2.1 Richardson Number

The Richardson number is a measure of the type of mixing within the water col-

umn. It is a function of the ratio of density stratification to velocity shear and was

calculated using the following formula:

Ri = −

g

ρ

∂ρ

∂z
/(
∂u

∂z
)2 (2)

For Richardson numbers (Ri) above 0 the stratification is stable. Here, either

entrainment or turbulent mixing may be present. Entrainment results in the up-

ward transport of dense water due to waves breaking at the pycnocline and is

found when Ri > 0.25. Turbulent mixing occurs between Richardson numbers of

0 and 0.25. This type of mixing is characteristic of a more balanced exchange

where both dense water is lifted and less dense water is brought down. When

Ri < 0 unstable water is present, where dense water overlies less dense water

(Dyer 1997).

The calculated Richardson numbers shown in Figure 10 indicate more areas

of instability and turbulent mixing during the flood transect. Most of this is found

between 5 and 8km downstream of Station 1, which coincides with areas of large

gradients in current velocity (Figure 9). These areas of more mixing could have re-

sulted in increased particle collisions that would increase flocculation and hence,

particle size. However, increased mixing may also have caused an increase in

velocity shear across individual particles, leading to floc break up. As a result, no

relationship was found between particle size and Richardson number.

The relatively shallow profiles of Station 10 (7.5km downstream of Station 1),

present in both transects shown in Figure 10, are due to high current volecities

(Figure 9) causing the line holding the instruments to stream behind the survey

boat.

Figure 10: Richardson numbers of the ebb (a) and flood (b) transects. Red indicates
unstable water (Ri < 0). Blue colours indicate a stable water column (Ri > 0), with
light blue being conditions of entrainment (Ri > 0.25) and dark blue being conditions of
turbulent mixing (Ri = 0-0.25).
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4.3 SPM Distribution

The results from the filtration of surface water samples show a decrease in both

organic and inorganic SPM towards the mouth of the estuary during ebb and

flood conditions (Figure 11). There was a greater decrease in concentration

towards the mouth during the flood transect. The mean concentration of SPM

only changed by 0.1mg.L-1 from the ebb to flood transects. However, the rela-

tive amounts of inorganic and organic SPM were markedly different in the two

transects (Table 2).

Figure 11: Concentrations of suspended particulates obtained from the filtration of sur-
face water samples during the ebb (a) and flood (b) transect. Red lines are concentrations
obtained from Method A (three repeats of filtration, as shown in section 3.3) and the blue
lines show concentrations from Method B (one repeat carried out immediately after the
water sample was taken). Error bars are not shown to allow for easier interpretation.

Table 2: Mean concentrations of suspended particulates for each transect. Using the
method described in section 3.3.

Ebb Transect Flood Transect
(Concentrations in mg.L-1) Method A Method B Method A Method B

Mean [SPM] 5.8 5.3 5.7 5.0
Mean [Inorganic SPM] 3.8 4.1 4.0 3.6
Mean [Organic SPM] 2.1 1.2 1.8 1.4

The concentrations of SPM obtained from filtration that are presented in Figure

11, show a decrease in the concentration of organic particles towards the mouth.

The results of the filtration using the method described in section 3.3 (Method A -

red lines) gave consistently higher concentrations of organics than those obtained
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from filtration immediately after the water sample was collected (Method B - blue

lines). This is likely to be due to growth of organic material in the water sample

between the time of collection and filtration. The differences between the two

techniques, however, was within the confidence level of the results and therefore

could have been due to chance.

Figure 12: Concentrations of SPM (obtained from the OBS), inorganic SPM and organic
SPM (obtained from the Fluorometer) along the ebb (a) and flood (b) transects.

Figure 12, which displays the distribution of SPM along the two transects,

shows that the greatest concentrations of SPM (10-14mg.L-1) were in the lower

layers of the flood transect between 0 and 4km downstream of Station 1. The ma-

jority of these particles were inorganic. High concentrations of organic particles

(>2.5mg.L-1) were found in surface waters between 0 and 6.5km downstream of

Station 1.

An indication of relative changes in SPM concentration were also estimated

using acoustic backscatter from the ADCP (Figure 13). This correlates well with

the concentration of SPM obtained from the OBS (Figure 12 and 14). However,

there are a number of discrepancies, for example between 7 and 8 km down-

stream of Station 1 during the flood transect. This coincides with an area of

high velocities (Figure 9) which may have resulted in an increase in the number

of bubbles in the water column, causing an increase the amount of backscatter.

This is supported by a larger spread of ADCP echo amplitudes at the locations

of low OBS backscatter, as shown in Figure 14. This suggests that the ADCP

was responsive to more scatterers within the water column than the OBS. How-

ever, there was no significant relationship between the ADCP echo amplitude at

a depth of 2m and the concentration of SPM obtained from filtration (see Ap-

pendix D). This suggests that the the ADCP was responding to scatterers other

than SPM, for example bubbles created by surface waves. The backscatter from
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the ADCP was therefore not calibrated from the filtration results and is instead

presented with a scale of low to high intensities.

Figure 13: Normalised echo amplitudes obtained from the ADCP along the ebb (a) and
flood (b) transects.

Figure 14: (a) The relationship between echo amplitude from the ADCP and the OBS
response. This relationship is significant, with a correlation coefficient of +0.5, as the min-
imum coefficient required at 0.05 level of significance is 0.098. ADCP echo amplitudes
at a depth of 2m and the SPM concentrations obtained through filtration are also shown
from the ebb (b) and flood (c) transects.

The coloured plots of Figure 15 show large vertical gradients in the ratio of

inorganic to organic SPM between 0 and 6 km from Station 1 during the flood

transect. This is due to a high concentration of organics near the surface overlying

a high concentration of inorganics near the bed (Figure 12). As discussed earlier,

this is likely to be as a result of a greater light intensity and temperature near the

surface.

The line graphs show no significant change in the ratio of inorganic to organic

SPM towards the mouth during the ebb transect, whereas a strong negative cor-

relation was found in the flood transect (Figure 15). This may be due to the

differences in the time at which the data were collected as the first stations of the

ebb transect were recorded in the first hour of the tidal cycle. This was soon after

slack water, where the tidal currents were relatively weak. However, during the
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Figure 15: Ratios of inorganic to organic SPM along the ebb (a) and flood (b) transect
presented as coloured surface plots of bin-averaged values (top) and a line graph of mean
values at each station (bottom). As the ratio increases, the relative amount of inorganic
SPM increases. (Minimum correlation coefficient required at 0.05 level of significance =
0.482.)

flood transect, data from these stations were collected in the last hour of the tidal

cycle. This was relatively soon after the area had been subjected to the stronger

flows of the third and fourth hour of the flood tide, as shown between 5 and 8km

downstream of Station 1 in Figure 9 (b). The resultant increases in mixing were

observed in these highly concentrated areas of the lower layers of the flood tran-

sect, as expected (Figure 10). This increase in mixing would then allow more

sediment in the bed layer to be brought into suspension. The diffusion processes

associated with this mixing are then likely to decrease the sediment concentration

gradient, effectively lifting the regions of high concentration up the water column.

As a result, an increase in concentration of inorganic SPM was observed within

these areas of the flood transect (Figure 12). It would also be expected that there

would be an increase in particle size as more sediment is brought into suspension

through these higher current velocities. This is supported by the stronger relation-

ship between particle size and distance from the head of the estuary during the

flood transect (Figure 17).

As the majority of the SPM in the open ocean is of organic content, such as

phytoplankton, the overall increase in the relative concentration of organic SPM

towards the mouth during the flood transect is as expected and is supported by

the work of Bowers & Binding (2006), Hill et al. (2000) & Perillo (1995).
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The fluxes of SPM shown in Figure 16 indicate little movement of sediment

in Plymouth Sound (between 8 and 12km) during the start of the flood tide. The

greatest movement occurred in the upper 5km of the flood transect. This is likely

to be due to the high concentrations of sediment recorded at this time (Figure 12)

rather than high current velocities (Figure 9).

Figure 16: SPM Fluxes for the ebb (a) and flood (b) transects. The fluxes shown were
calculated by multiplying the concentrations of total SPM by the along-flow velocity. This
assumes that suspended particles within the water column move at the same rate as the
water, and as a result the fluxes shown will be slightly overestimated.

[91]



The Plymouth Student Scientist, 2010, 3, (2), 63-108

4.4 SPM Size

There were large fluctuations in mean particle size throughout both ebb and flood

transects, as shown by the coloured plots of Figure 17. However, a statistically

significant decrease in depth-averaged mean particle size towards the mouth was

found during both ebb and flood conditions. It would be expected that particle

size would increase with depth due to lower fall velocities of smaller particles.

However, there was no correlation between mean particle size and depth. An

explanation for this may be that current velocities throughout the water column

were greater than the threshold required to keep particles in suspension.

Figure 17: Mean particle size for each depth bin along the ebb (a) and flood (b) tran-
sects obtained from the LISST. The coloured plots (top) show mean sizes in 1m depth
bins along the transect. The line graphs (bottom) show mean particle sizes for each sta-
tion. Black data cells are areas that have been discarded due to schlieren. (Minimum
correlation coefficient required at 0.05 level of significance = 0.482.)

The decrease in size towards the mouth shown in Figure 17 can be explained

by a decrease in the concentration of organic SPM (Figure 12). There are two

possible reasons for this: either more organisms such as plankton were situated

further towards the head of the estuary or there were larger flocs dominating the

area. The reason for larger flocs in areas of high organic SPM concentration is

that the surfaces of an organic particles consist of convoluted polymer chains,

known as EPS (extra-cellular polymeric substances), which increase the strength

of the bond between flocculated particles (Manning & Dyer 2002). When com-

bined with turbulent flows that increase particle collisions, this phenomenon in-

creases flocculation, and hence an increase in particle size was observed. The

flocs that result have a relatively low density as the EPS allow particles to be

bonded together with relatively large spaces between the particles that make

up the floc. This decreases the effective density, resulting in the fall velocity

of the floc being less than that of a typical inorganic particle of the same size

(Dyer & Manning 1999). Analysis of images obtained from the DIGIHOLOCAM

supported this (Figure 18), emphasising the importance of EPS to flocculation,

as highlighted by Kitchener (1972). It is likely that the size of these particles were
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underestimated by the LISST, as each cluster of solid material would have been

considered as an individual particle. In spite of this error, a statistically significant

relationship between the concentration of organic material and the mean particle

size was found using particle size data obtained from the LISST (Figure 19). This

correlation was stronger during the flood transect, which may be explained by a

greater amount of mixing during the flood tide (Figure 10), causing an increase in

particle collisions and therefore a greater chance of flocculation.

Figure 18: Examples of flocs recorded by the DIGIHOLOCAM. Individual clusters of
solid material joined by EPS are clearly visible. (Grid spacing = 0.5mm.)

Figure 19: Relationship between concentration of organic SPM and mean particle size
for the ebb (a) and flood (b) transects. (Minimum correlation coefficient required at 0.05
level of significance = 0.482.)

A number of anomalies were identified in the LISST data and presented as

black data cells in Figure 17. Most of the anomalous data points were in the

upper 4m of the water column and were identified as schlieren using the DIGI-

HOLOCAM. This was found to cause distortions in the images that prevented any

calculation of particle size, shape or concentration (Figure 20). In these areas the

LISST produced anomalous peaks in particle size, and as a result, the data from

these locations were discarded. The work of Mikkelesen et al. (2008), contra-

dict this, suggesting that schlieren causes an apparent decrease in particle sizes

identified by the LISST. The removal of schlieren-influenced data resulted in a 2%

decrease in the overall mean particle size estimated by the LISST.

Other possible anomalies highlighted by the DIGIHOLOCAM were that of zoo-

plankton such as crustaceans, as shown in Figure 21. However, the distribution

of these organisms was so sparse that their effect was negligible.
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Figure 20: Raw DIGIHOLOCAM image of schlieren at a depth of 2.6m at station 8 (6km
downstream of Station 1) of the flood transect.

Figure 21: A selection of holographic images of zooplankton recorded by the DIGI-
HOLOCAM.

4.4.1 The Effect of Turbulence

The structure function technique proposed by Wiles et al. (2006) was used to cal-

culate TKE dissipation from the individual velocity beams of the ADCP. Equation

1 was then used to calculate the associated Kolmogorov microscale.

It would be expected that turbulence would act to both increase the size of

small particles by increasing collisions and hence flocculation, and to decrease

the size of large particles due to velocity shear across the diameter of the par-

ticle, causing floc breakup (Fugate & Friedrichs 2003). This would suggest that

a decrease in Kolmogorov microscales would result in a smaller mean particle

size and a reduction in the standard deviation of the particle size distribution.

However, there was no significant correlation between mean particle size and the

Kolmogorov microscale (Figure 22) or the standard deviation of particle size dis-

tribution and the Kolmogorov microscale (Figure 23). It would also be expected
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for the skewness of particle size distribution to be affected by turbulence. The

skewness is a measure of the asymmetry of the data around the mean. A nega-

tive skewness indicates that the distribution is spread out more to the left of the

mean, with a peak to the right. A positive skewness indicates a spread to the

right, with a peak to the left of the mean. It would therefore be expected for larger

Kolmogorov microscales to allow for larger particles and therefore a smaller skew-

ness and for small Kolmogorov microscale to be associated with larger skewness

values. However, there was no significant relationship found between Kolmogorov

microscales and skewness, as shown in Figure 24.

There are a number of possible explanations for finding no significant relation-

ships between Kolmogorov microscale and the particle size distribution. Firstly, a

turbulent eddy is likely to reduce the size of larger particles, and will therefore not

have a strong relationship with the mean particle size. It may therefore be more

beneficial to investigate the relationship between Kolmogorov microscale and

maximum particle size or the skewness of the particle size distribution. Another

explanation may be that the area of data collection was not a region of high TKE,

leading to biological processes such as bonding through EPS to play a greater

role in the flocculation process due to observed Kolmogorov microscales being

too large to cause floc break up (Figure 22 (c)). Also, differential settling is likely

to play a greater role in flocculation in lower TKE conditions (Fugate & Friedrichs

2003). This would therefore lead to the conclusion that processes other than

turbulence may have been acting to affect particle size.

Figure 22: Kolmogorov microscales for the ebb (a) and flood (b) transects. The dark blue
cells between 10.5 and 12km downstream of Station 1 in the ebb transect indicate the
region where it was not possible to calculate TKE dissipation. The relationship between
Kolmogorov microscale and mean particle size is shown in the scatterplot (c).
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Figure 23: Standard deviation of particle size distribution for the ebb (a) and flood (b)
transects. The relationship between the standard deviation of particle size distribution
and the Kolmogorov microscale is shown in the scatterplot (c).

Figure 24: Skewness of particle size distribution for the ebb (a) and flood (b) transects.
The relationship between the skewness of particle size distribution and Kolmogorov mi-
croscales is shown in the scatterplot (c).
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A further possibility for there being no significant relationship is that the method

used for determining TKE dissipation did not accurately estimate Kolmogorov mi-

croscales. This is likely to be due to the large number of errors associated with

using an ADCP to measure TKE dissipation as highlighted by Wiles et al. (2006),

as well as additional problems with using an ADCP on a moving boat. For ex-

ample, even though the calculations were were only applied to the data when the

boat was stationary for profiling, there was some variation in boat position and

orientation. Any movement of the ADCP during this process would have resulted

in changes to the individual beam velocities recorded, decreasing the reliability

of TKE dissipation estimates. Also, the width of each acoustic beam transmitted

by the ADCP increases with depth. This results in an increase in the area over

which the velocities are estimated as depth increases, causing a reduction in the

resolution of the velocity structure in the deeper waters. As a result, the esti-

mation of TKE dissipation would have decreased in accuracy with depth. For a

more detailed exploration into the effect of turbulence on SPM dynamics, a much

higher resolution instrument, such as a profiling ADV or FLY probe, would be more

appropriate.

Despite the difficulties of measuring the complex dynamics of the estuarine pro-

cesses of flocculation, turbulent characteristics and their relation to the dynamics

of SPM, this study has achieved the aims and objectives set out in Section 1 by

identifying the influence of a number of physical processes on the distribution and

size of SPM within the lower Tamar Estuary.
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5 Summary and Conclusions

The suggested temperature, salinity and density structure of a partially mixed

estuary made by Dyer (1997) & Uncles et al. (1986) was observed, and the hy-

drodynamics of the two transects made showed increased mixing during flood

conditions.

Expected trends of reduced concentrations of SPM towards the mouth of the

estuary (from 7mg.L-1 to 5mg.L-1) were recorded. Acoustic backscatter high-

lighted some regions of high SPM concentration. However, when comparing

the acoustic measurements at the surface with results obtained through the fil-

tration of surface water samples, increased echo amplitudes were observed in

locations where there was not a high concentration of SPM. This suggests that

the acoustic backscatter showed response from a number of additional scatterers

that were not SPM. The concentration of organic SPM was highest (2.5mg.L-1) in

the surface waters of the upper flood transect. Ratios of inorganic to organic SPM

decreased towards the mouth during the flood tide (from 3.5 to 1.5), supporting

the work of Bowers & Binding (2006).

The relationship between particle size and concentration of organic material

suggests that an observed decrease in particle size towards the mouth was due

to a higher concentration of organic SPM in the upper reaches of the study area.

Anomalous peaks in particle size (> 300µm) identified in LISST data were often

due to the presence of schlieren. The use of imaging was vital in identifying the

causes of these anomalies in order for them to be removed from the analysis.

A number of convoluted flocs were observed in the analysis of images obtained

by digital holography. This emphasised the importance of EPS to flocculation

processes, as highlighted by Dyer & Manning (1999). Particle shape is there-

fore an important factor to consider when characterising SPM. This suggests that

the assumption of spherical particles made by LISST instruments is incorrect in

locations where organic material is present.

The analysis of the data used in this study highlights the highly complex issues

associated with the characterisation of SPM. Many flocs have convoluted shapes,

suggesting that better shape parameterisation is required when determining par-

ticle size using instruments such as the LISST. The use of digital holography has

the potential to reduce these errors and is key to identifying anomalies such as

schlieren or large organisms. ADCP and OBS instruments had similar responses

in conditions of high SPM concentrations (12-14mg.L-1). However, they had very

different responses in locations of lower SPM concentrations. It is therefore nec-

essary for further research into the response of different instruments on a variety

of different particles, using optical backscatter, acoustic backscatter and laser

diffraction techniques, before an accurate characterisation of SPM can be made.

[98]



The Plymouth Student Scientist, 2010, 3, (2), 63-108

References

Admiralty (n.d.), ‘Tidal stream atlas of plymouth sound’.

Agrawal, Y. C. & Pottsmith, H. C. (2000), ‘Instruments for particle size and settling

velocity observations in sediment transport’, Marine Geology 168, 89–114.

Allen, G. P., Salmon, J. C., Bassoulet, P., Perihoat, Y. D. & Grendpre, D. (1980),

‘Effects of tides on mixing and suspended sediment transport in macrotidal

estuaries’, Sedimentray Geology 26, 69–90.

Bale, A. J. (1996), ‘In situ laser optical particle sizing’, Journal of Sea Research

36(1), 31–36.

Bate, A. J. & Morris, A. W. (1987), ‘In situ measurements of particle size in estu-

arine waters’, Estuarine, Coastal and Shelf Science 24(2), 253–263.

Benson, T. & French, J. R. (2007), ‘InSiPID: A new low-cost instrument for in situ

particle size measurements in estuarine and coastal waters’, Journal of Sea

Research 58, 167–188.

Bowers, G. G. & Binding, C. E. (2006), ‘The optical properties of mineral sus-

pended particles: A review and synthesis’, Estuarine, Coastal and Shelf Sci-

ence 67, 219–230.

British-Standard (1989), ‘Testing aggregates, part 103. Method for determination

of particle size distribution’, Section 103.2 Sedimentation test .

Bunt, J. A. C., Larcombe, P. & Jago, C. F. (1999), ‘Quantifying the response of

optical backscatter devices and tranmissometers to vartiations in suspended

particulated matter’, Continental Shelf Research 19, 1199–1220.

Cameron, W. M. & Pritchard, D. W. (1963), ‘Estuaries’. In Hill, M. N. (ed.), THE

SEA 2, Wiley, New York, 306-324.

Dalrymple, R. W., Zaitlin, B. A. & Boyd, R. (1992), ‘Estuarine facies mod-

els: Conceptual basis and stratigraphic implications’, Journal of Sedimentary

Petrology 62, 1130–1146.

Davies, J. L. (1964), ‘A morphological approach to world shorelines’, Zeitschrift

fur Geomorphologie 8, 127–142.

Davies, R. A. & Hayes, M. O. (1984), ‘Hydrodynamics and sedimentation in wave-

dominated coastal environments’, 60, 313–329. In Greenwood, B., Davis Jr.,

R. A. (ed.), What is a Wave-Dominated Coast? Marine Geology 60, 313-329.

[99]



The Plymouth Student Scientist, 2010, 3, (2), 63-108

Dyer, K. R. (1997), Estuaries: A Physical Introduction, 2 edn, John Wiley & Sons,

Chicester, West Sussex, England.

Dyer, K. R., Cornelisse, J., Dearnaley, M. P., Fennessy, M. J., Jones, S. E., Kap-

penberg, J., McCave, I. N., Pejrup, M., Puls, W., VanLeussen, W. & Wolfstein,

K. (1996), ‘A comparison of in situ techniques for estuarine floc setting velocity

measurements’, Journal of Sea Research 36(1), 15–29.

Dyer, K. R. & Manning, A. J. (1999), ‘Observation of the size, settling velocity and

effective density of flocs, and their fractal dimensions’, Journal of Sea Research

41, 87–95.

Eidma, D. & Kalf, J. (1996), ‘In situ particle (floc) size measurements with the

NIOZ in situ camera’, Journal of Sea Research 36(1), 49–53.

Fowler, J., Cohen, L. & Jarvis, P. (1998), Practical Statistics for Field Biology,

second edn, John Wiley and Sons.

Fugate, D. C. & Friedrichs, C. T. (2003), ‘Controls on suspended aggregate size in

partially mixed estuaries’, Estuarine, Coastal and Shelf Science 58, 389–404.

Gentien, P., Lunven, M., Lehaitre, M. & Duvent, J. L. (1995), ‘In-situ depth profiling

of particle sizes’, Deep-Sea Research I 42(8), 1297–1312.

Grabemann, I., Uncles, R., Krause, G. & Stephens, J. A. (1997), ‘Behaviour of tur-

bidity maxima in the Tamar (U.K.) and Weser (F.R.G.) Estuaries’, Estuarine,

Coastal and Shelf Science 45, 235–246.

Hansen, D. V. & Rattray, M. (1966), ‘New dimensions in estuary classification’,

Limnology and Oceanography 11(3), 319.

Hill, P. S., Milligan, T. G. & Geyer, W. R. (2000), ‘Controls on effective settling

velocity of suspended sediment in the Eel River food plume’, Continental Shelf

Research 20, 2095–2111.

Irigoien, X. & Castel, J. (1997), ‘Light limitation and distribution of chlorophyll pig-

ments in a highly turbid estuary: The Grionde (SW France)’, Estuarine Coastal

and Shelf Science 44, 507–517.

Jackson, G. A., Maffione, R., Costello, D. K., Alldrdge, A. L., Bruce, E. L. & Dam,

H. G. (1997), ‘Particle size spectra between 1µm an 1cm at Monterey Bay

determined using multiple instruments’, Deep-Sea Research I 44(11), 1739–

1767.

Kitchener, J. A. (1972), ‘Principles of action of polymeric flocculants’, British Poly-

mer Journal 4(3).

[100]



The Plymouth Student Scientist, 2010, 3, (2), 63-108

Knowles, S. C. & Wells, J. T. (1996), ‘Suspended aggregate analysis using

ISAAC, Elbe River, 9-10 June 1993’, Journal of Sea Research 36(1), 69–75.

Law., D. J., Bale, A. J. & Jones, S. E. (1997), ‘Adaptation of focused beam re-

flectance measurement to in-situ particle sizing in estuaries and coastal wa-

ters’, Marine Geology 140, 47–59.

Lynch, J. F., Irish, J. D., Sherwood, C. R. & Agrawal, Y. C. (1994), ‘Determin-

ing suspended sediment particle size information from acoustical and opti-

cal backscatter measurements’, Continental Shelf Research 14(10/11), 1139–

1165.

Maldiney, M. A. & Mouchel, J. M. (1996), ‘In situ video recording of suspended

flocs’, Journal of Sea Research 36(1), 87–91.

Manning, A. J. & Dyer, K. R. (2002), ‘The use of optics for the in-situ determina-

tion of flocculated mud characteristics’, Journal of Optics A: Pure and Applied

Optics 4, S71–S81.

Mikkelesen, O., Milligan, T., Hill, P., Chant, R., Jago, C., Jones, S., Krivtsov, V. &

Mitchelson-Jacob, G. (2008), ‘The influence of schlieren on in situ optical mea-

surements used for particle characterisation’, Limnology and Oceanography:

Methods 6, 133–143.

Mikkelsen, O. A., Hill, P. A., Milligan, G. & Chant, R. J. (2005), ‘In situ particle size

distributions and volume concentrations from a LISST-100 laser particle sizer

and a digital floc camera’, Continental Shelf Research 25, 1959–1978.

Milligan, T. G. (1996), ‘In situ particle (floc) size measurements with the benthos

373 plankton silhouette camera’, Journal of Sea Research 36(1), 93–100.

Nichols, M. M. & Biggs, R. B. (1985), ‘Estuaries’, pp. 77–186. In Davies, A. A.

(ed.), Coastal Sedementary Environments, Springer-Verlag, New York.

Nimmo-Smith, A. (2008). Pers. com.

O’Neill, P. (1998), Environmental Chemistry, third edn, Blackie Academic & Pro-

fessional, London.

Perillo, G. M. E., ed. (1995), Geomorphology and Sedimentology of Estuaries,

Elsevier.

Pritchard, D. W. (1952), ‘Salinity distribution and circulation in the Chesapeake

Bay’, Journal of Marine Research 11, 106–123.

Pritchard, D. W. (1955), ‘Estuarine circulation patterns’, Proceedins of the Ameri-

can Society of Civil Engineers 81(717).

[101]



The Plymouth Student Scientist, 2010, 3, (2), 63-108

Richards, S. D., Heathershaw, A. D. & Thorne, P. D. (1996), ‘The effect of sus-

pended particulate matter on sound attenuation in seawater’, Journal of Acous-

tical Soc. America 100, 1447–1450.

Stemmann, L., Gorsky, G., Marty, J.-C., Picheral, M. & Miquel, J.-C. (2002),

‘Four-year study of large-particle vertical distribution (0-1000 m) in the NW

Mediterranean in relation to hydrology, phytoplankton, and vertical flux’, Deep-

Sea Research II 49, 2143–2162.

Styles, R. (2006), ‘Laboratory evaluation of the LISST in stratified fluid’, Marine

Geology 227, 151–162.

Syvitski, J. P. M. & Hutton, E. W. H. (1996), ‘In situ characteristics of suspended

particles as determined by the Floc Camera Assembly FCA’, Journal of Sea

Research 36(1), 131–142.

Thorne, P. D. & Hanes, D. M. (2002), ‘A review of acoustic measurement of small-

scale sediment processes’, Continental Shelf Research 22, 603–632.

Thorpe, S. A. (2005), The Turbulent Ocean, Cambridge University Press, Cam-

bridge.

Uncles, R. J. (1990), ‘Longditudinal dispersion processes in the upper Tamar

Estuary’, Estuaries 13(2), 118–124.

Uncles, R. J., Elliott, R. C. A. & Weston, S. A. (1985a), ‘Lateral distributions of

water, salt and sediment transport in a partly mixed estuary’. In Edge, B. L.

(ed.), Proceedings of the 19th Internationsl Conference on Coastal Engineer-

ing, Chapter 204. American Society of Civil Engineers, New York.

Uncles, R. J., Elliott, R. C. A. & Weston, S. A. (1985b), ‘Observed fluxes of water,

salt and suspended sediment in a partly mixed estuary’, Estuarine, Coastal and

Shelf Science 20, 146–168.

Uncles, R. J., Elliott, R. C. A., Weston, S. A., Pilgrim, D. A., Ackroyd, D. R., McMil-

lan, D. J. & Lynn, N. M. (1986), ‘Synoptic observations of salinity, suspended

sediment and vertical current structure in a partly mixed estuary’, pp. 58–70. In

J. van Kreeke (ed.), Lecture Notes on Coastal and Estuarine Studies, Springer-

Verlag, New York.

VanLeussen, W. & Cornelisse, J. M. (1996), ‘The underwater video system VIS’,

Journal of Sea Research 36(1), 77–81.

Wiles, P. J., Rippeth, T. P., Simpson, J. H. & Hendricks, P. J. (2006), ‘A novel tech-

nique for measuring the rate of turbulent dissipation in the marine environment’,

Geophysical Research Letters 33.

[102]



The Plymouth Student Scientist, 2010, 3, (2), 63-108

Appendix

A Tides

Figure 25: Tidal heights for the duration of the transects. Times for each station are
marked with dotted lines.
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B Meteorological Data
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Figure 26: Meteorological data leading up to the time of data collection. (Obtained from
the Fitzroy weather station on the University of Plymouth campus.)

Figure 26 shows that the period between the 15th and 19th of June consisted

of relatively low atmospheric pressure and high mean windspeeds. There was

very little rain during the days preceding the data collection, other than between

the 1st and 6th of June and during the 18th June.
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C Calibration of OBS & Fluorometer

Figure 27: The relationship between SPM concentrations obtained through filtration and
the OBS & Fluorometer response at a depth of 2m.

Product moment correlation coefficient:

r =
nΣxy − ΣxΣy

√

[nΣx2
− (Σx)2][nΣy2 − (Σy)2]

OBS:
Σx = 5.3291 Σy = 173.7204

(Σx)2 = 28.3991 (Σy)2 = 30179

Σx2 = 0.9982 Σy2 = 1047

n = 30 Σxy = 32.0992

r =
30× 32.0992− 5.3291× 173.7204

√

[30× 1047− 30179][30× 0.9982− 28.3991]

r = 0.8534

0.8534 = A strong correlation

Fluorometer:
Σx = 19.697 Σy = 58.0058

(Σx)2 = 387.9726 (Σy)2 = 3364.7

Σx2 = 14.9461 Σy2 = 117.4092

n = 30 Σxy = 40.1588
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r =
30× 40.1588− 19.697× 58.0058

√

[30× 14.9461− 387.9726][30× 117.4092− 3364.7]

r = 0.6377

0.6377 = A modest correlation

The calculated correlation coefficients of 0.8534 and 0.6377 (calculated above)

exceed the tabulated value in Appendix 5 of Practical Statistics for Field Biology

(Fowler et al. 1998) at 28 degrees of freedom, of 0.361 at a 0.05 level of signif-

icance. Both correlations are therefore statistically significant and the following

equation can therefore be used to calibrate the OBS and Fluorometer from the

filtration results:

y = mx+ c

OBS calibration:

y = mx+ c

SPMOBS = 24.0739× V oltageOBS + 1.5143

Fluorometer calibration:

y = mx+ c

OrganicSPMF luorometer = 1.03× V oltageF iltration + 1.2573

These formulae were applied to all the OBS and Fluorometer data.
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D Calibration of ADCP Backscatter
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Figure 28: The relationship between SPM concentrations obtained through filtration and
the ADCP echo amplitude at a depth of 2m (a). Calibrated ADCP echo amplitudes for the
ebb (b) and flood (c) transects.

The same method of calibration used in Appendix C was used. It is clear that

this calibration was not successful due to there being no relationship between

surface SPM concentration and the ADCP echo amplitude at 2m.
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E ADCP Current Velocities

E.1 Station Timing Check

Figure 29: Comparison between bottom tracking speed and the start times (green lines)
and finish times (red lines) at each station (a).

It is clear from graphs (b) and (c) of Figure 29, that bottom tracking depths

(black line) and current velocities were roughly constant between the green and

red lines. This confirms that the timings were accurate and that the data between

green and red lines could be averaged to produce time-averaged velocities for

each station.

E.2 ADCP Current Velocities Before Rotation

Figure 30: Northward and Eastward ADCP current velocities recorded on the ebb (a)
and flood (b) transects.
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