
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2013

Service Quality and Profit Control in

Utility Computing Service Life Cycles

Heckmann, Benjamin

http://hdl.handle.net/10026.1/1568

http://dx.doi.org/10.24382/3468

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

benjamin heckmann

S E RV I C E Q U A L I T Y A N D P R O F I T C O N T R O L I N U T I L I T Y C O M P U T I N G
S E RV I C E L I F E C Y C L E S

Doctor of Philosophy, September 2012

S E RV I C E Q U A L I T Y A N D P R O F I T C O N T R O L I N U T I L I T Y
C O M P U T I N G S E RV I C E L I F E C Y C L E S

by
benjamin heckmann

A thesis submitted to the University of Plymouth
in partial fulfilment for the degree of

doctor of philosophy

September 2012 – version 1.1

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyright rests with
its author and that no quotation from the thesis and no information
derived from it may be published without the author’s prior consent.

Benjamin Heckmann: Service Quality and Profit Control in Utility Com-
puting Service Life Cycles, © September 2012

A B S T R A C T

S E RV I C E Q U A L I T Y A N D P R O F I T C O N T R O L I N
U T I L I T Y C O M P U T I N G S E RV I C E L I F E C Y C L E S

benjamin heckmann

Utility Computing is one of the most discussed business models
in the context of Cloud Computing. Service providers are more and
more pushed into the role of utilities by their customer’s expectations.
Subsequently, the demand for predictable service availability and pay-
per-use pricing models increases. Furthermore, for providers, a new
opportunity to optimise resource usage offers arises, resulting from
new virtualisation techniques. In this context, the control of service
quality and profit depends on a deep understanding of the represen-
tation of the relationship between business and technique.

This research analyses the relationship between the business model
of Utility Computing and Service-oriented Computing architectures
hosted in Cloud environments. The relations are clarified in detail
for the entire service life cycle and throughout all architectural layers.
Based on the elaborated relations, an approach to a delivery frame-
work is evolved, in order to enable the optimisation of the relation
attributes, while the service implementation passes through business
planning, development, and operations.

Related work from academic literature does not cover the collected
requirements on service offers in this context. This finding is revealed
by a critical review of approaches in the fields of Cloud Computing,
Grid Computing, and Application Clusters. The related work is anal-
ysed regarding appropriate provision architectures and quality assur-
ance approaches.

The main concepts of the delivery framework are evaluated based
on a simulation model. To demonstrate the ability of the framework to
model complex pay-per-use service cascades in Cloud environments,
several experiments have been conducted. First outcomes proof that
the contributions of this research undoubtedly enable the optimisa-
tion of service quality and profit in Cloud-based Service-oriented
Computing architectures.

v

C O N T E N T S

i field of research 1

1 introduction 3

1.1 About the Author 4

1.2 Utility Computing Service Life Cycle 6

1.3 Problems in Service Quality and Profit Control 10

1.4 Research Approach 13

1.5 Contributions 14

1.6 Outline of the Thesis 16

2 background 19

2.1 Research Methodologies in This Thesis 19

2.1.1 Research Objectives and Corresponding Scien-
tific Methods 19

2.1.2 Overview of Scientific Methods in Computer Sci-
ence 19

2.1.3 A Quick Classification of Scientific Methods 21

2.1.4 Computer Science & Engineering in a Nutshell 22

2.1.5 Science, a Short Definition 22

2.2 Utility Computing as Business Model 24

2.3 Service-Oriented Computing as Architectural Model 28

2.4 Cloud Computing as Hosting Model 30

2.4.1 NIST’s Cloud Definition 30

2.4.2 Classification by Workload Model 32

2.5 Service Life Cycle 34

2.6 Summarising the Research Background 37

3 related work 39

3.1 Provision Models for Utility Computing Platforms 39

3.1.1 Utility Computing/Cloud Models 39

3.1.2 Grid Models 48

3.1.3 Application Cluster Models 51

3.2 Usage-Centred Assurance of Service Quality 53

3.2.1 Categorisation of Quality of Service, Experience,
and Business 53

3.2.2 Quality Assurance in Cloud Computing Envi-
ronments 55

3.3 Summarising the Related Work 58

ii contributions 61

4 requirements concerning a generic service life

cycle 63

vii

viii contents

4.1 Research Methodology 63

4.2 Relations Inside a Service Life Cycle 64

4.2.1 Cost-Price-Customer Relation 65

4.2.2 Consumer-Service Relation 68

4.2.3 Service-Resource Relation 71

4.2.4 Outlining the Relation Between Customer, Ser-
vice, and Resource 73

4.3 Requirements on Provision Quality Control 74

4.3.1 Service Quality and Service Level Agreements
in Utility Computing 75

4.3.2 Feasibility of Business Processes Operated on
SOC Architectures Hosted on IaaS 78

4.4 Requirements on Provision Platforms 80

4.4.1 Functional Requirement Extraction 80

4.4.2 Qualified Industry Standards 91

4.4.3 Mediation Conditions in Utility Computing 94

4.4.4 Summary of the Requirements on Provision Plat-
forms 96

4.5 Summarising the Requirements 96

5 usage-centred provision approach 99

5.1 Research Methodology 99

5.2 Core Provision Model 100

5.2.1 Consolidation of Primary Requirements on Pro-
vision Platforms 100

5.2.2 Derivation of Provision Components 105

5.2.3 Derivation of Core Workflows Between Provi-
sion Components 110

5.3 Usage-Centred Assurance of Service Quality 114

5.3.1 Levels of Usage 115

5.3.2 Usage Patterns 116

5.3.3 Decision Tree 117

5.3.4 Business Service Level Agreements 119

5.3.5 Feasibility Rating for Service Cascades 121

5.3.6 Concept for Usage-Centred Assurance of Ser-
vice Quality 125

5.4 Usage-Centred Data Model 126

5.4.1 Data Model Specification 126

5.4.2 Core Provision Model Integration 127

5.5 Demonstration of the Life Cycle Interaction 130

5.5.1 Delivery Framework Composition 131

5.5.2 Business Planning 132

5.5.3 Development 133

5.5.4 Operations 135

contents ix

6 simulation model framework 137

6.1 Background of Model Building and Simulation 137

6.1.1 Simulation 137

6.1.2 Building Discrete-Event Models 139

6.2 Related Simulation Model Frameworks 139

6.3 Simulation Model Elaboration 143

6.4 Implementation of the Simulation Model 147

6.4.1 OMNeT++ Simulation Library & Framework 147

6.4.2 Model Structure in NED Language 148

6.4.3 Model Logic as C++ Components 151

6.4.4 Configuration of Simulation Runs 152

6.5 Capabilities and Restrictions of the Framework 155

iii evaluation 157

7 evaluation of the simulation model framework

159

7.1 Evaluation of Basic Cloud Scenarios 159

7.1.1 Test Cases Derivation 159

7.1.2 Federation of Cloud Components 159

7.1.3 Hybrid Cloud Provisioning 162

7.1.4 Cloud Computing Environments Under High
Load 165

7.2 Evaluation of Advanced Cloud Scenarios 169

7.2.1 Simple Service Cascades 169

7.2.2 Complex Service Cascades 174

7.3 Evaluation Summary 175

8 conclusions 179

8.1 Contributions 180

8.2 Limitations 182

8.3 Future Work 182

8.4 Technology Review 183

bibliography 185

publications 201

L I S T O F F I G U R E S

Figure 1 Delivery Framework to Support the Mapping
of the Customer-Service-Resource Relation Onto
the Life Cycle of Utility Computing Services 4

Figure 2 Simple Generic Service Life Cycle 8

Figure 3 Service-Oriented Computing Uses Workflow Lan-
guages for Service Composition 30

Figure 4 Generic Service Life Cycle 34

Figure 5 Setting of the Scenery for Service Life Cycles
in This Thesis 37

Figure 6 Buyya’s Federated Network of Clouds Medi-
ated by a Cloud Exchange (Buyya et al., 2010) 40

Figure 7 Kertesz’s SLA-Based Resource Virtualisation Ar-
chitecture (Kertesz et al., 2009) 41

Figure 8 Liu’s Architecture for Green Data Centres (Liu
et al., 2009) 42

Figure 9 Marks & Lozano’s Cloud Computing Techni-
cal Reference Architecture (Marks and Lozano,
2010) 42

Figure 10 Mendoza’s Software Application Service Frame-
work (Mendoza, 2007, p. 143) 44

Figure 11 Phan & Li’s Vertical Load Distribution via Mul-
tiple Implementation Options (Phan and Li, 2010) 45

Figure 12 Villegas & Sadjadi’s Architecture for the Map-
ping of Non-Functional Requirements (Ville-
gas and Sadjadi, 2011) 46

Figure 13 Zhang’s Layered View of a Service Delivery
Platform (Liang-Jie Zhang, 2007, p. 313) 48

Figure 14 Foster’s Open Grid Service Architecture Frame-
work (Foster et al., 2005) 49

Figure 15 Underlying Concepts of GRASP (Dimitrakos
et al., 2002) 50

Figure 16 Höing’s Architecture for Secure Workflow Or-
chestration for Cloud and Grid Services (Hoe-
ing, 2010) 50

Figure 17 Architecture of the ICENI II Execution Envi-
ronment (McGough et al., 2006) 51

Figure 18 Arsanjani’s Service-Oriented Reference Archi-
tecture S3 (Arsanjani et al., 2007) 52

x

List of Figures xi

Figure 19 Urgaonkar’s Hosting Platform Architecture (Ur-
gaonkar et al., 2005b) 53

Figure 20 QoS, QoE, and QoBiz from the Point of View of
a Service Provider (Van Moorsel, 2001) 55

Figure 21 Overview of the Relation Between Customer,
Service, and Resource 64

Figure 22 Relations Between Price, Cost, and Customer
in a Generic Service Life Cycle 68

Figure 23 Relations Between Consumer and Service in a
Generic Service Life Cycle 69

Figure 24 Relations Between Service and Resource in a
Generic Service Life Cycle 72

Figure 25 Overview of Quantitative and Qualitative As-
pects of Service Quality Control 77

Figure 26 Generic Multi-Tier SOC Architecture Including
Redundant Service Offers 80

Figure 27 Illustration of Workflow 1_SSC 111

Figure 28 Illustration of Workflow 2_CoSC 112

Figure 29 Illustration of Workflow 3_CaSC 114

Figure 30 Liang’s Levels of Usage 115

Figure 31 Usage Behaviour Description by Usage Pattern 116

Figure 32 Decision Tree for Utility Computing Service
Request Routing 118

Figure 33 Simple Business Service Level Agreement 120

Figure 34 Feasibility Rating for Service Cascades in Generic
Multi-Tier SOC Architectures Including Redun-
dant Service Offers 124

Figure 35 Coverage of Liang’s Levels of Usage 125

Figure 36 Usage-Centred Data Model 128

Figure 37 Illustration of the Delivery Framework as Com-
position of the Contributions on the Compo-
nent and Data Level 131

Figure 38 Field of Interests of Business Planning on the
Component and Data Level in the Delivery Frame-
work 133

Figure 39 Field of Interests of Development on the Com-
ponent and Data Level in the Delivery Frame-
work 134

Figure 40 Field of Interests of Operations on the Com-
ponent and Data Level in the Delivery Frame-
work 136

Figure 41 Buyya’s Cloud Simulation Model Framework
Class Design Diagram (Calheiros et al., 2011a) 140

Figure 42 Basic Schema of the Nunez’s iCanCloud Ar-
chitecture (Nunez et al., 2012) 142

Figure 43 Kliazovich’s GreenCloud Architecture (Kliazovich
et al., 2010b) 143

Figure 44 Mapping of the Delivery Framework Into the
Simulation Model 145

Figure 45 Multi-Tier Architecture View on the Simula-
tion Model 146

Figure 46 Screenshot of the Simulation Model Framework
Implementation 151

Figure 47 Mean Request Distribution of the Service Con-
sumer Group 166

Figure 48 Result Comparison Between CloudSim (CS) and
the Simulation Model Framework (SMF) in High
Load Scenarios 168

Figure 49 Mean Request Distributions of the Service Con-
sumer Groups 170

Figure 50 Overview of the Experimental Setup Architec-
ture 171

Figure 51 Average Response Times of Runs FIFO-2, PRIO-
2, FIFO-3, and PRIO-3 Differentiated by Ser-
vice Level (SL) and Corresponding Standard
Deviation (d) 172

Figure 52 Fail Rate of Runs FIFO-2, PRIO-2, FIFO-3, and
PRIO-3 Differentiated by Service Level (SL) 172

Figure 53 Drop Rate of Runs FIFO-2, PRIO-2, FIFO-3, and
PRIO-3 Differentiated by Service Level (SL) 173

Figure 54 Utilisation Rate and Provision Costs of Runs
FIFO-2, PRIO-2, FIFO-3, and PRIO-3 173

Figure 55 Service Cascade Including Service Bill Flow 174

Figure 56 Examples of Analysable SMF Metrics 176

L I S T O F TA B L E S

Table 1 Result Comparison Between CloudSim (CS) and
the Simulation Model Framework (SMF) in Cases
Without Federation (1S) and With Federation (3S) 161

Table 2 Result Comparison Between CloudSim (CS) and
the Simulation Model Framework (SMF) in a
Private (P) and Public (+<hosts>) Cloud Setup 164

xii

Table 3 Configuration of the Modelled Service Con-
sumer Groups (G) 166

L I S T I N G S

Listing 1 Example of a Network Module Definition in
NED Code 148

Listing 2 Example of a Service Consumer Group Defini-
tion in NED Code 149

Listing 3 Example of a Service Provider Definition in
NED Code 150

Listing 4 Example of a Resource Configuration for Ser-
vice Hosts 152

Listing 5 Example of a Load-Balancing Configuration 154

Listing 6 Example for the Configuration of Service Re-
quest Cascades 155

A C R O N Y M S

ASP Application Service Provision

API Application Programming Interface

BPEL Business Process Execution Language

BSLA Business Service Level Agreement

CMDB Configuration Management Database

CPU Central Processing Unit

CRM Customer Relationship Management

CS Computer Science

GRASP Grid-based Application Service Provision

GUI Graphical User Interface

HA High-Availability

xiii

xiv acronyms

IaaS Cloud Infrastructure as a Service

IT Information Technology

ITIL IT Service Management Standard

MI Million Instructions

MIPS Million Instructions Per Second

NIST National Institute of Standards and Technology, United States
of America

OGSA Open Grid Service Architecture

OSI Open Systems Interconnection

PaaS Cloud Platform as a Service

QoBiz Quality of Business

QoE Quality of Experience

QoS Quality of Service

SaaS Cloud Software as a Service

SLA Service Level Agreements

SMF Simulation Model Framework

SOA Service-oriented Architectures

SOAP Simple Object Access Protocol

SOC Service-oriented Computing

TCO Total Cost of Ownership

UC Utility Computing

UML Unified Modeling Language

VM Virtual Machine

XML Extensible Markup Language

A C K N O W L E D G M E N T S

This thesis introduces the results collected over six and a half years of
research. In this long period of time, many people contributed to my
point of view on life in general and science in particular. My thanks
go to all of them. Without some of whose assistance and knowledge
this thesis would not have been successful - they therefore should be
mentioned specifically.

In memory of and in gratitude to Prof. Dr. Günter Turetschek. He
led my way into science as my initial Director of Studies.

Thanks to Prof. Dr. Christoph Wentzel for the energy he put into
my supervision. Beyond his role as Director of Studies, he always
cared about the personal aspects connected to the studies.

I would like to thank Prof. Dr. Ronald C. Moore for adopting the
role of second supervisor. Our discussions significantly improved the
comprehensibility of my results.

Special thanks to Prof. Andrew D. Phippen. Andy has always been
the light at the end of the tunnel.

I would like to show my gratitude to Prof. Dr. Klaus Kasper. I have
no idea, where he found the time - but he has been always there for
long discussions about my research, science in general, and some-
times life in particular.

I would like to express my sincere thanks to Sebastian Abt. In his
case, I know where he took all the time for our long discussions about
life in general, my research, and science in particular.

Also to mention is Björn Bär. He dragged me through the last weeks
of writing up. Thanks.

Thanks to Prof. Dr. Udo Bleimann for always seeing the positive
site and for his gift of speech.

Special thanks go to Dr. Ingo Stengel for being an example for mas-
tering the hard path.

I would like to express my sincere thanks to Marcus Zinn. He has
been walking the path with me.

Special thanks to my girlfriend. Growing beyond herself, she is an
example for me and her two kids.

I am indebted to my family for supporting me.
To my friends, especially those who still remember me: now I have

time. Thanks for your patience.

The set of icons used is provided by http://dryicons.com. Thanks.

xv

A U T H O R ’ S D E C L A R AT I O N

At no time during the registration for the degree of Doctor of Philos-
ophy has the author been registered for any other University award
without prior agreement of the Graduate Committee.

Relevant scientific seminars and conferences were regularly attended
at which work was often presented; external institutions were vis-
ited for consultation purposes. Several papers were published in the
course of this research project, details of which are listed in the ap-
pendices.

Word count of main body of thesis: 48713 words

Signed:
Benjamin Heckmann

Date:

Part I

F I E L D O F R E S E A R C H

1
I N T R O D U C T I O N

“[...] since a service delivery process covers design, de-
livery, and operation, a common model of the customer’s
service business may be helpful to track the variations
from any of the three phases and analyze their impacts
on other phases.”1

— Liang-Jie Zhang (2007, p. 328)

The ease of offering and using Information Technology (IT) services is
rising with the availability and bandwidth of the Internet in general.
The more consumers rely on the availability of service offers, the more
the providers of those services are pushed into the role of utilities; not
intentionally, but driven by their customer’s expectations qualified by
the daily use of public utilities. Specifically in the B2B2 markets, the
demand for predictable service availability increases and has become
one of the key properties of service contracting.

Another key property of contracting is service pricing. Understand-
ing computing as a utility leads the customer to expect pay-per-use
pricing models.

Service providers are thereby motivated to improve service offers
in case of availability on the one hand and to provide pay-per-use
pricing models on the other hand. Both of these varying goals can be
reduced to the optimisation of the relation between customer, service
and resource, as shown in Section 4.2. While the relation itself is un-
changeable, its representation in service life cycles can be improved,
as shown in Section 5.5.

The current representation of the customer-service-resource rela-
tion within a service life cycle reveals gaps in service level agreeing,
life cycle information exchange, support for make-or-buy decisions,
and economic-efficient quality control. These gaps prevent economic
availability management and effective pay-per-use pricing models.
This research introduces an approach to a delivery framework to nar-
row these gaps. The framework enables the development, examina-
tion, and operation of pay-per-use pricing models at the technical
edge of business administration and software engineering.

1 Zhang stated this open research question aiming at service delivery platforms for
multi-customer service offers. In the context of this thesis, the customers are service
providers.

2 business to business

3

4 introduction

Figure 1: Delivery Framework to Support the Mapping of the Customer-
Service-Resource Relation Onto the Life Cycle of Utility Comput-
ing Services

The framework consists of the components shown in Figure 1. The
delivery framework supports the business planning with a data model
for business Service Level Agreements (SLA), introduced in Section
5.3.4, and usage patterns, described in Section 5.3.2. The design of
software architectures is supported with a component model, workflow
model, and corresponding data model, evolved in the Sections 5.2.2,
5.2.3, and 5.4. In Section 5.3.3, the framework is completed with a
decision tree to enable economic-efficient service request routing.

The research demonstrates the capabilities of the evolved delivery
framework based on a simulation model. The simulation results are
able to represent a set of common test cases for Cloud Computing
environments.

1.1 about the author

The author has an experience of more than 13 years in IT consult-
ing, specialised in the representation of business processes in Service-
oriented Architectures (SOA) and in the operation of virtualised data
centres. The author’s professional experience started in 1999 as an
IT administrator in a small company for Enterprise Resource Planing
software. Afterwards, he worked as software engineer for a company
specialised on Product Data Management software. In this context,
the author was engaged in solutions for automated data exchange in
business processes spanning multiple companies.

1.1 about the author 5

Since 2003, the author has been head of an applied research team at
the University of Applied Sciences Darmstadt. The team conducted
consulting and software development projects in the field of SOA. Con-
currently, he built and operated a data centre in the research institute
as head of operations. The data centre was the first to introduce vir-
tualisation technologies in the university.

In 2006, the author was engaged in the foundation of a company for
Business Process Management in the context of SOA. In 2009, he co-
founded a business for IT consulting, in order to provide professional
services regarding the research results gained during this thesis. Since
2012, the author has been co-founder of a data centre spin-off for
Cloud Computing consulting.

During this work, some requirements and challenges started to oc-
cur more frequently. More and more business managers started to
worry about the scalability of their service offers. But on the other
hand, they often failed to specify properly and to communicate their
usage expectations. For IT architects, it became more and more obvi-
ous that common architectural patterns for IT services would not scale
in large dimensions. And in addition, IT architects often did not have
this usage dimension clearly specified. The prediction of resource de-
mands for the calculation of IT budgets started to make operations
management getting heavily complex, with applications suddenly be-
ing able to allocate resources on their demand, while competing on
the resource pool. A standardised usage description in the service life
cycle could have improved all of the previously addressed problems.

During the business planning of IT service offers, business man-
agers often struggle with the degree of freedom they have in the con-
ception of service levels and pricing. This struggle typically results in
concepts with expectations towards technology that are unrealisable
or in service offers not being innovative, as they do not exhaust the
possibilities. In typical discussions with IT architects, the planning of
the scalability of service architectures often gets controversial. The
ideas, which dependencies between actors in a component model are
to be expected, often differ. Further elaborating this though, a lack of
deeper knowledge about the data these actors have to exchange of-
ten leads to controversy. Operations managers often complain about
not having a comprehensive insight into running services, contracted
service levels, and usage expectations. There is a general uncertainty
of what data should be collected to optimise resource demand predic-
tions. A usage-centred data model could improve all of the previously
addressed problems.

When it comes to the calculation of costs of service development
and operations, most business managers draw back to the market

6 introduction

leaders. Often, because the comparison of provision solutions for Util-
ity Computing services is difficult without the knowledge of a mini-
mal set of features that should be claimed. Operations managers are
often in the same position when it comes to the examination of alter-
natives to already productive provision solutions. In discussions with
IT architects of provision solutions, it has often been discussed what
kind of features should be implemented as part of a minimal set and
in which architecture this should be done. A core provision model
for Utility Computing services could improve all of the previously
addressed problems.

Offering diverse levels of service quality for a bunch of services
affects the whole service life cycle. Business managers often aim at
the introduction of economic characteristics as metrics for automated
decisions about resource usage. For IT architects, this introduces the
need for a deeper knowledge about the interdependencies among in-
frastructure services in the horizontal application layer and vertical
throughout all Open Systems Interconnection (OSI) layers. This view
on service quality gets even more complex in operations, as the num-
ber of services rises. A model for usage-centred assurance of service
quality could improve the previously addressed problems.

The previously implied problem of the complexity of service cas-
cades in relation to infrastructure continues when the complexity of
service cascades is analysed on the level of service interrelations. For
business managers, this often leads to weak estimations of costs for re-
source demands and incorrect decisions on the buying-in of external
service offers. From the point of view of IT architects, quality assur-
ance for service cascades with different service levels has often been
omitted as too complex. As detailed analyses of demands are often
estimated as much too complex to handle, operations managers often
simplify resource demands, resulting in generous over-provision.

In this context, in 2006 it became visible, that the idea of Service-
oriented Computing (SOC) and virtualisation technologies would lead
to a new paradigm of how resources in data centres are to be utilised.
There was a strong indication, that these innovations would lead to
new pay-per-use business models, demand advanced architectural
models, create new hosting models, and that this would massively
influence the service life cycle as a whole.

1.2 utility computing service life cycle

Business Model

Utility Computing (UC) (cf. Section 2.2) is introduced as a generic
business model (cf. Section 2.2) in this thesis. It addresses IT services

1.2 utility computing service life cycle 7

that are offered to a broad range of customers corresponding to ser-
vices provided by public utilities (cf. Section 2.2). The model reflects
the core strategical aspects of IT service offers:

• Multiple differentiated customer groups;

• Resource scalability;

• Usage-centred pricing models;

• Reliability of quality agreements.

In a wide range of aspects, this definition relies on implicit proper-
ties inherited from business models of public utilities (e.g., necessity,
usability, exclusivity; cf. Section 2.2).

As a business model blueprint, UC does not refer to any specific
architectural or hosting model. Any IT service provided correspond-
ing to the UC definitions can be referred to as UC service (parallel
computations, object storage, mail service, web applications, virtual
machines (cf. Section 2.4), etc.).

Architectural Model

SOC (cf. Section 2.3) is based on the approach of SOA (cf. Section 2.3)
which introduces a loose coupling between providing and consum-
ing components3 in software architectures. SOC is an extension to the
approach of SOA. Here, loose coupling is also introduced within the
context of an architectural component itself. This leads to the con-
cept of composite services represented by SOC. The composition is
implemented using a workflow language as composition descriptor.
In the end, the consequent realisation of building services out of ex-
isting services leads to a network of highly meshed interdependent
services called service cascade (cf. Section 2.3).

Hosting Model

The provision of the following types of IT services is specified by the
term hosting of infrastructure, platform or software in this thesis:

• Basic IT infrastructure (e.g., storage, computing resources);

• Application platforms like VMware’s Cloud Foundry (VMware,
2011a), Microsoft’s Windows Azure (Microsoft, 2011), or Ama-
zon’s Elastic Beanstalk (Amazon, 2011);

3 Logical group of functionalities within a software architecture, see Section 2.3 for a
detailed definition.

8 introduction

• Maintained software instances (mail services, web applications,
etc.).

Cloud Computing (cf. Section 2.4) subsumes these hosting charac-
teristics and targets an extensive automation of the corresponding
management operations in order to provide those services. Specific
technical features for cloud-enabled provision platforms are not spec-
ified in the Cloud Computing model.

Service Life Cycle

Assuming the position of a service provider, each new offer of ser-
vices like a hosted Customer Relationship Management (CRM) sys-
tem, similar to Salesforce.com (2011), starts with the planning of its
expected business potential. This business planning leads to detailed
assumptions about expected provision costs and estimated service
usage. Based on these expectations, during development the service is
implemented as a software application. After reaching the aimed tech-
nical quality, the service is deployed to its operations environment.
In operations the service is maintained continuously until market con-
cerns imply changes to service features. Then the service’s life cycle
restarts in a new phase of business planning.

Figure 2: Simple Generic Service Life Cycle

In summary, a basic service life cycle comprises the phases:

• Business planning;

• Development;

• Operations.

The introduced life cycle is based on the IT Service Management Stan-
dard (ITIL) (cf. Section 2.5).

Life Cycle of UC Services in Service-oriented Computing, Hosted in Cloud
Environments

This research addresses the mapping of the customer-service-resource
relation into the life cycle of Utility Computing services in Service-

1.2 utility computing service life cycle 9

oriented Computing Architectures hosted on Cloud Computing plat-
forms assuming the position of service providers.

As a process of continuous increase of division of labour, indus-
trialisation of the information technology industry carries on. Due
to its success, the Internet provides the infrastructure to offer IT ser-
vices to a broad range of customers, reaching from international en-
terprises to private consumers. Service providers are easily enabled
to offer their services within different markets. Being successful with
this strategy is forcing providers into the role of a utility; pushed
by their customer’s expectations. Market success broadens the range
of how service offers are used and relied on with a dynamic driven
by the service consumers like implied by O’Reilly’s statement: “cus-
tomers are building your business for you”4 (Batelle and O’Reilly,
2004). Therefore, this research examines Utility Computing as rele-
vant future business model for service providers.

IT services scaling available resources dynamically matching cus-
tomer demands and metered by usage might be implemented based
on a broad range of architectural patterns (e.g., monolithic applica-
tion, client–server model, peer-to-peer model). Keeping the ongoing
IT industrialisation in mind, reliable offers - like characterised by UC

- encourage providers to increase the level of service reuse, includ-
ing services from other vendors. Complex service cascades depend
on software architectures able to reflect these interdependencies. To
meet this requirement, SOC is chosen as architectural model for the
implementation of UC services in this research. (Marks and Lozano,
2010)

Hosting multiple services based on SOC architectures leads to spe-
cific requirements on the underlying hosting model. Multiple UC ser-
vices overlap in their feature sets regarding dynamic resource scaling
and usage metering. This enables optimisation potential within the
overall provision architecture. By relocation of UC-specific features
into the underlying hosting layer, this optimisation is achieved. Cloud
Computing enables the dynamic resource scaling as feature subset
and is therefore chosen as hosting model in this thesis.

Service provision is about optimal resource utilisation in order to
maximise service profits assuming the position of a service provider.
After the decision to offer services conforming to the business model
of UC, efficiency estimations have to be made. This part of the busi-
ness planning involves estimations for service development as well
as its future operational cost. To calculate the Total Cost of Owner-

4 Which was originally stated in the context of the Web 2.0 discussion, but is carried
on to web-based service offers in general in this thesis.

10 introduction

ship (TCO)5 and oppose it to the estimated sales revenue, the service’s
entire life cycle has to be taken into account.

For a more detailed setting of the IT scenery for service life cycles
in this thesis see Section 2.6.

1.3 problems in service quality and profit control

The problems described in the following refer to the research context
stated in Section 1.2.

The basic properties of service offers conforming to the business
model of Utility Computing are the ability to serve differentiated cus-
tomer groups, to scale resources on demand, to price customers by
usage, and to keep reliable quality agreements. All this properties tar-
get the relation between customer, service, and resource (see Figure
1). Thus, in the following this relation is referred to as the core relation
of Utility Computing. Analysis of this relation reveals the following
three main problems (cf. Section 4) introduced as:

• P1 — Description of the customer-service-resource relation;

• P2 — Control of service quality;

• P3 — Analysis of complex service cascades.

Description of the Customer-Service-Resource Relation

The relation between customer, service, and resource is only indi-
rectly represented within the life cycle of an IT service. Analysing the
phases of a life cycle from business planning, through development,
to service operations, three local problems within the characteristic of
the relation occur. These problems prevent a direct relation between
customer, service, and resource and, in summary, describe the first
main problem, introduced as P1, for providers of UC services. The
below listed properties are missing in the relation between customer,
service, and resource.

• P1a — Standardised usage description for data exchange be-
tween phases of a life cycle

In business planning, the complexity of service cascades in UC

scenarios requires an effective foundation for the analysis of
price and cost models in alternative usage and resource scenar-
ios. Such an analysis can be accomplished using specialised soft-
ware (e.g., simulation frameworks) assumed a standardised de-

5 TCO indicates the total cost related to the provision of a service. It includes the direct
and indirect cost spread over the service’s life cycle. (Ellram, 1995)

1.3 problems in service quality and profit control 11

scription of the service usage exists. During development, miss-
ing usage descriptions obstruct significant performance analysis
to verify the estimated cost of operations.

Usage descriptions are also essential in the context of service
quality control and usage accounting.

• P
1b — Comprehensive usage-centred data model

The basis for analysis of the customer-service-resource relation
is its formal description. Without such a description, neither the
data exchange between phases of the life cycle nor a core pro-
vision model for UC services are technically feasible. As formal
form of description of the customer-service-resource relation, a
data model is chosen. A usage-centred data model enables data
exchange by offering the overall set of relevant data. Also, a pro-
vision model requires a data model as anchor for its provision
workflows.

• P1c — Core provision model for Utility Computing services

Commonly, services are not developed from scratch but based
on existing application platforms (e.g., J2EE). The decision for
an adequate application platform is complicated through the
missing description of the minimum requirements on UC pro-
vision. This leads to a weak basis for cost estimations in the
development of UC services.

Control of Service Quality

Current monitoring of service quality is mainly based on technical
thresholds (e.g., processor load, memory consumption). Economic
characteristics, like the profit per service request, are not considered
during runtime. In addition, there is no continuous combined eco-
nomic and technical control of service quality for UC environments
(Rust, 2009). Necessarily, this control would have to reach through
all OSI layers (Zimmermann, 1980) from a consumer to a resource.
This control is currently also missing due to the fact that in practice
there is no detailed knowledge about the dependencies of services
among one another. Detailed control of delivery quality cannot be
implemented without providing a continuous approach to economic
and technical control, introduced as second main problem P2 in the
UC core relation.

Two essential requirements on UC are high service availability and
scalability. In essence, these properties are based on the ability to
monitor and control service quality in detail on all technical layers
from customer to processing resource. Known technical monitoring

12 introduction

solutions6 do not completely cover all architectural layers (Rust, 2009),
also due to the fact that previous to this thesis there was no suitable
approach to a core provision model for Utility Computing services
available.

Internally, providers make use of overbooking of resource on pur-
pose, taking contracted penalties into account. None of the known
technical solutions consider economic characteristics at runtime to
control provision quality in cases of resource overbooking (cf. Section
4.3). Instead, economic efficiency has to be the central benchmark for
control of service quality in Utility Computing scenarios.

In addition, feasibility of business processes based on SOC architec-
tures cannot be reliably estimated based on approaches that focus on
technical monitoring, as shown in Section 4.3.2.

Analysis of Complex Service Cascades

In strict service-oriented software architectures complex usage rela-
tions arise quickly among the involved services, even with a small
number of services given. For a service cascade 7 involving n services,
the maximum number Kn of edges is calculated as Kn = n (n−1)

2
8

(West, 1999). For a service cascade involving 20 services, this results
in Kn= 190 possible edges9. This results in a maximum complexity of
O(n2) for a fully meshed service cascade.

Continuing the example, it is assumed that the number su of ac-
tually used service relations - out of all possible edges Kn - is only
one third of Kn. It is also assumed that at least two kinds of services
can be distinguished, in this example called business and basic ser-
vices. Basic services offer highly reused essential features to business
services. It is assumed that the number su of basic services in the ex-
ample cascade is also on third of Kn. Also, it is assumed that basic
services are by the factor of rb = 2 more often invoked than business
services.

In the example, there are g = 2 user groups with distinct usage
behaviour regarding their type of service usage. The resulting num-
ber of service relations in this example can be calculated as R =

∑ (Knsu, Knsbrb) g. For the estimated 20 services this results in a ser-
vice cascade involving 380 service relations. The complexity of service
cascades states the third main problem in the UC core relation, intro-
duced as P3.

6 Amberpoint, Progress Actional, SOA Manager Service Manager, Oracle Enterprise
Manager SOA Management Pack and OpTier CoreFirst

7 A service cascade is defined as connected vertices in a graph, where each connection
represents a distinct type of service usage (cf. Section 2.3).

8 for complete graphs with n vertices
9 representing usage relations of services

1.4 research approach 13

The more complex such cascades become, the more complicated
becomes the analysis of their interdependencies. The more services
from other providers are embedded into the own service cascades,
the more rises the complexity for business managers, as those have to
consider individual pricing models or alternative standby providers.
The more scenario alternatives have to be compared, the more com-
plexity rises, too.

The manual analysis of the economic efficiency of a single service
cascade or a complete service-oriented software architecture is ex-
pected to be very complex, as described in the example above. As-
suming consistent usage-based accounting including bought-in ser-
vices and redundant providers, such complex scenarios cannot be
analysed manually. If additionally multiple usage scenarios have to
be analysed, the complexity of an analysis rises again.

The control of service quality and its planning in the described
scenarios is challenging. Concerning this complexity, fine itemised
service quality classes can neither be manually implemented during
planning nor managed at runtime.

1.4 research approach

Within the research context stated in Section 1.2, the research focuses
on the representation of the core relation of Utility Computing (de-
fined in Section 1.3) within a generic service life cycle. The research
raises the question, whether this customer-service-resource relation
indicates specific life cycle properties. The existing knowledge in this
area suggests that the UC context has a significant impact on certain
life cycle properties. Deduced from the introduced position, the fol-
lowing research was conducted. As research methods, simulation in
conjunction with modelling are chosen (cf. Section 2.1).

a. Analysis of Utility Computing requirements on service life cy-
cles

The results of the analysis is presented in Chapter 4. Based
on the analysis of the essence of UC in the context of this re-
search, three identified main problems P1-3 are analysed. Within
a generic life cycle for SOC services, the UC-specific relations are
identified and elaborated. The UC-specific requirements on the
control of provision quality are characterised assuming the po-
sition of service providers. In addition, this chapter introduces
results of the analysis of the primary requirements on UC provi-
sion platforms. These results are summarised at the end of the
analysis and result in detailed representation of requirements

14 introduction

on the development of approaches to resolve the previously
identified problems in service life cycles.

b. Elaboration of a usage-centred provision approach

In Chapter 5 the elaborated approach to an improved represen-
tation of the core relation of Utility Computing in service life
cycles is presented. For the elaboration the previously identi-
fied requirements are evaluated and evolved into three concepts.
The combined approach covers a core provision model, a con-
cept for usage-centred assurance of service quality, and a usage-
centred data model. Within the chapter it is demonstrated how
these concepts interact with a generic life cycle.

c. Evaluation of a simulation model for service cascades in Utility
Computing

Based on the previously evolved approach in Chapter 6 the sim-
ulation model for service cascades in Utility Computing is build.
Therefore, the core provision model, the concept for usage-centred
assurance of service quality, and the usage-centred data model
are incorporated into a single simulation model for multi-tier
service architectures. Beside model building, the scientific back-
ground, capabilities and restrictions of the simulation model are
discussed. In Chapter 7, the model is evaluated in comparison
to a set of common test cases for Cloud Computing environ-
ments.

Concluding this research, its contributions, limitations, and a scope
for further work are presented.

1.5 contributions

In order to advance the representation of the core relation of Utility
Computing (defined in Section 1.3) in service life cycles, a delivery
framework is introduced in this research as a combined approach,
as shown in Figure 1. The delivery framework consists of six con-
tributions consolidated in three concepts (see Chapters 5 and 6). The
evolved approach focuses on UC services in Service-oriented Comput-
ing architectures hosted on Cloud Computing platforms. Assuming
the position of service providers, the approach contributes three key
findings to support UC service offers in a generic service life cycle,
listed below.

1.5 contributions 15

• Technology-independent10 core provision model for Utility Com-
puting platforms

The provision model is implemented as generic technology-independent
component architecture. The model describes the minimum nec-
essary functionalities and dependencies among function providers
in an operations environment for UC services within this re-
search context. Beside the components, representing logically
grouped functions, the model contains corresponding basic work-
flows describing the minimum necessary interaction of these
components to provide a UC operations environment. The model
has to be incorporated into an architectural pattern to prepare
a software/provision architecture for UC services.

• Concept for usage-centred assurance of service quality

In the concept of usage-centred assurance of service quality the
monitoring and control of provision quality does no more rely
on technical criteria in the first place. The concept is determined
by a usage-centred quality specification approach. To enable a
continuous quality specification based on usage descriptions for
services an adequate data model has been evolved. Embedded
into the data model, a description pattern - introduced as usage
pattern - covers the quantitative description of the usage rela-
tions in service cascades. Based upon, business SLAs are intro-
duced as alternative to contract on service usage rather than
on technical resource limits. Attendant, on the qualitative side
of the usage relation, the concept demonstrates a decision tree
for runtime quality control, bringing together the influencing
factors to optimise economic provision efficiency.

10 Definition of technology-independence in this thesis: In which way an IT architect
chooses to integrate the functionalities and workflows the model demands is depen-
dent on the service’s context. For a single service offer the integration into a simple
2-tier software architecture might be appropriate, as known from script-based web
applications. For multiple service offers the integration into the architecture of the
provision platform might be appropriate. In this sense, the model is independent of
technologies and corresponding architectural patterns of service or platform imple-
mentations.

16 introduction

• Technology-abstracted11 resource and cost simulation model

The formerly introduced contributions form the basis for the
building of the evolved simulation model. The simulation model
has been built having chosen a generic multi-tier architectural
pattern as example architecture. Simulation runs enable the anal-
ysis of service cascades for their interactions in case of resource
demand, price and cost evaluation, and structural weaknesses
(e.g. loops, single points of failure). The simulation model per-
mits analysis of multiple service providers, each offering mul-
tiple services hosted in multiple data centres, and analysis of
multiple consumer groups.

The introduced simulation model represents the essence of the core
provision model and the concept for usage-centred assurance of ser-
vice quality. In Chapter 7, this research evaluates the results of sim-
ulation runs in comparison to a set of common test cases for Cloud
Computing environments. First outcomes of the evaluation show the
ability of the simulation model to reflect essential characteristics of
the common test cases and prove the applicability of the introduced
approach in the given scenarios.

1.6 outline of the thesis

The thesis is structured in eight chapters. The following list illustrates
the order of the chapters and their objectives.

1. Introduction

Within this chapter, the scene for the conducted research is
set. The life cycle of Utility Computing services for Service-
oriented Computing Architectures hosted in the cloud is briefly
described as research context. Within this life cycle, the main
problems in service quality and profit control are presented.
In addition, the conducted research approach is specified. As
contributions of this research, the combined approach of deliv-
ery framework including a technology-independent core pro-
vision model for Utility Computing platforms, a concept for
usage-centred assurance of service quality, and a technology-
abstracted resource and cost simulation model is characterised.

11 Definition of technology-abstracted in this thesis: The simulation model can be used
to simulate any service cascades matching a multi-tier architectural pattern. In this
sense, it is independent of the technical implementation of the services, but bound
to the chosen architectural pattern.

1.6 outline of the thesis 17

2. Background

The scientific and engineering foundations of the research con-
text are introduced and corresponding terms, used in this thesis,
are defined within this chapter. The chapter starts with the de-
scription of scientific research methods in the field of computer
science. Afterwards, the research context is defined in detail.

3. Related work

The works of other authors in the scientific fields related to
this research project are presented and demarcated to the re-
search of the author. The chapter begins with the introduction
of approaches for provision models for utility computing plat-
forms. It is distinguished by utility computing/cloud models,
Grid models, and application cluster models. Concluding, the
chapter introduces approaches for the usage-centred assurance
of service quality.

4. Requirements concerning a generic service life cycle

The specific requirements of Utility Computing services on a
generic service life cycle are introduced within this chapter. Pre-
sented are the UC-specific relations within a service life cycle,
the results of the analysis of the service quality assurance, and
the evolved primary requirements on UC provision platforms.

5. Usage-centred provision approach

For the requirements on Utility Computing services, elaborated
in Chapter 4, this chapter introduces an approach to advance
the representation of these requirements on UC service life cy-
cles. As research results, a combined approach to a technology-
independent core provision model for Utility Computing plat-
forms, a concept for usage-centred assurance of service quality,
and a usage-centred data model are described.

6. Simulation model framework

In this chapter, a technology-abstracted resource and cost sim-
ulation model based on the research results provided in Chap-
ter 5 is evolved. The implementation of the model as a simu-
lation model framework for multi-tier architectures hosting UC

services is described. As part of the description, it is shown how
the previous research results are embedded in the framework.
The chapter also includes an overview of computer simulation
and a discussion of the features and limitations of the developed
framework.

18 introduction

7. Evaluation of the simulation model framework

The test cases, experimental setup, and results of several simu-
lation runs are presented in this chapter. The simulation model
framework evolved in Chapter 6 is evaluated on its capability
to model basic and advanced cloud environments. It is shown
that the framework is able to comply to this challenges.

8. Conclusions

This chapter summarises the objectives, research approach, and
contributions of this thesis. In addition, the limitations of the
thesis are discussed. Concluding, potentials for future work is
presented. The research is concluded with a technology review.

2
B A C K G R O U N D

2.1 research methodologies in this thesis

This chapter illustrates which understanding of science leads to the
outcomes in this thesis. Introduced is the scientific background (cf.
Section 2.1.5) of the chosen scientific methods (cf. Section 2.1.1). In
addition, the chapter gives a short and simplified definition of com-
puter science (cf. Section 2.1.4) and corresponding scientific methods
(cf. Section 2.1.3, 2.1.2).

2.1.1 Research Objectives and Corresponding Scientific Methods

In the applied computer science fields related to Utility Computing
(cf. Section 2.2, 2.3, 2.4, and 2.5), the previously introduced research
objectives (cf. Section 1.3) have been examined. These objectives repre-
sent the observed consequences in the provision of Utility Computing
services (cf. Section 4).

The hypothesis is stated that an improved representation of the
core relation of Utility Computing within a generic service life cycle
(cf. Section 1.2) leads to an all in all more cost efficient service provi-
sion. Further, it is assumed that a core provision model, a concept for
usage-centred assurance of service quality, and a resource and cost
simulation model (cf. Section 5) are capable of achieving such goals.

As combined approach, the scientific methods of modelling and
computer simulation (cf. Section 2.1.2) are chosen to elaborate the pro-
posed models and concept. To test the hypothesis, a simulation model
based on the findings is implemented (cf. Section 6). In comparison
to a set of common test cases for Cloud Computing environments,
simulation runs are evaluated (cf. Section 7) as proof of concept.

2.1.2 Overview of Scientific Methods in Computer Science

Referring to Dodig-Crnkovic (2002), in Computer Science (CS) four
varying areas can be distinguished: modelling, theoretical, experimen-
tal, and simulation computer science, as listed below. Modelling is
specific in the sense that it may precede the other methods in most
cases.

19

20 background

• Modelling

In order to be studied, the phenomenon of interest must be sim-
plified in one sense. This process is called modelling. Modelling
always occurs in science as a first step of abstraction. A model
simplifies the phenomenon while taking the relevant features
of the phenomenon into account. Simplified models provide a
sort of description in some symbolic language. Models enable
predictions of observable/measurable consequences of changes
in a system.

The methods left - theory, experiment, and simulation - all ad-
dress models of phenomena in more or less detail.

• Theoretical computer science

Theoretical computer science adheres to the traditions of logic
and mathematics. It follows the very classical methodology of
building theories as logical systems, which means it uses strin-
gent definitions of objects (axioms) and operations (rules) for
deriving/proving theorems. Theoretical computer science seeks
to develop general approaches to problem solving and the un-
derstanding of computational paradigms. Theoreticians distil
knowledge acquired through conceptualisation, modelling and
analysis.

• Experimental computer science

Although the subject of inquiry in the field of computer sci-
ence is information, it makes no difference in the applicability
of the traditional scientific method. Experimental computer sci-
ence seeks to understand the nature of information processes by
observation of phenomena, formulating explanations and theo-
ries, and testing them.

• Computer simulation

Computer-based modelling and simulation has become the third
research methodology within computer science. This method
completes theory and experiment. Based on computer simula-
tion, it is possible to investigate regimes that are beyond current
experimental capabilities. In the realm of science, computer sim-
ulations are guided by theory as well as experimental results.
The results often suggest new experiments and theoretical mod-
els.

2.1 research methodologies in this thesis 21

2.1.3 A Quick Classification of Scientific Methods

Two types of methods are distinguished by the evaluated data: pri-
mary and secondary research. Primary research is focused on the
collection and evaluation of original data, while opposing secondary
research evaluates the existing data (generated by previous primary
research) to gather new findings. (Clarke, 2005)

In addition, research methods can be classified by their process of
theory construction. Distinguished are quantitative and qualitative
methods. Quantitative research aims to collect data corresponding to
a structured and standardised way from a preferably large random
sample. In opposite, in qualitative research data is collected based on
a preselected rather small characteristic sample. Data in qualitative
research is gathered by relevance. Data acquisition is continuously
being adapted based on previous research outcomes. If required, var-
ious research methods can be mixed depending on the research ob-
jectives. (Winter, 2000)

As an example for a common scientific method, the basic quantita-
tive method of science derived from the Socratic method is presented
in the following.

1. Pose a new question in the context of existing knowledge.

2. Formulate a tentative answer as new hypothesis.

3. Deduce consequences and predict results.

4. Test the new hypothesis in experiments and/or theoretically.
The new hypothesis must prove its precision by fitting into the
existing world-view. Position 2., 3., and 4. are to be repeated in
a loop with modifications of the hypothesis until 5. is obtained.
If major discrepancies are found, the process must restart at 1.
with a more accurate question.

5. When consistency is obtained, the hypothesis becomes a theory.
Theories provide a coherent set of propositions that define a
new class of phenomena. Or theories introduce a new theoret-
ical concept. At this stage, a theory gets subject of the process
of natural selection among competing theories. Then a certain
theory becomes a framework in which observations/theoretical
facts are explained or predictions are made.

In this thesis, a scientific method is defined as a structured process
that leads from a question to a proven and generic answer.

22 background

2.1.4 Computer Science & Engineering in a Nutshell

The definition of
computer science

and its demarcation
from other domains

of science and
engineering has been

discussed since its
beginnings. Still it
is only possible to

give a vague
overview of the state

of this discussion.

Studies in the field of computing1 commonly involve scientific and
engineering parts. The scientific part deals with the investigation of
research objectives and broadens the knowledge within the affected
area of computing. Research in the scientific parts of computing is
defined as computer science in this thesis. In opposite, the engineer-
ing part of studies is focused on the construction of reliable solutions
based on already given knowledge. Consequently, the engineering
part is defined as computer engineering within this thesis. (Dodig-
Crnkovic, 2003; Hansson, 2009)

Many fields within computer science have important links to other
fields such as Mathematics, Psychology, Cognition, Biology, Linguis-
tics, Philosophy, Behavioural, and Brain Sciences among many others.
One of the major qualities of computer science is to combine knowl-
edge from all these fields. This also includes the possibility to operate
with the scientific methods (cf. Section 2.1.3) related to these specific
sciences. (Dodig-Crnkovic, 2003)

2.1.5 Science, a Short Definition

φιλοσvοφία
2 can be literally translated as love of knowledge. Philosophy

is the mother of all science.
The beginnings of Western philosophy are credited to the Greeks

of the classical period. They believed that human reason is competent
on its own account - not dependent on religious or mystical princi-
ples - to formulate the right questions, and to seek answers to them,
concerning every matter of interest or importance to humanity. Start-
ing with this perspective, the Greeks of the classical period inquired
freely into all aspects of the world and humankind. (Grayling, 1999)

From this nucleus, philosophy started as a method (cf. Section 2.1.3)
to explore humans and their surrounding world. The more knowl-

1 The German, French and Italian languages use the respective terms ’Informatik’, ’In-
formatique’ and ’Informatica’ (Informatics in English) to denote Computing. It is
interesting to observe that the English term ’Computing’ has an empirical orienta-
tion, while the corresponding German, French and Italian term ’Informatics’ has an
abstract orientation. This difference in terminology may be traced back to the tradi-
tion of 19th-century British empiricism and continental abstraction, respectively. The
view that information is the central idea of Computing/Informatics is both scientifi-
cally and sociologically indicative. Scientifically, it suggests a view of Informatics as
a generalisation of information theory that is concerned not only with the transmis-
sion/communication of information but also with its transformation and interpre-
tation. Sociologically, it suggests a parallel between the industrial revolution, which
is concerned with the utilising of energy, and the information revolution, which is
concerned with the utilising of information. (Dodig-Crnkovic, 2003)

2 philosophia, Greek for philosophy (Liddell and Scott, 2011)

2.1 research methodologies in this thesis 23

edge3 and specific methods were collected, the more expert fields
within philosophy evolved to discrete sciences with their character-
istic sets of proven methods of exploration and description of their
certain domain of being.

Philosophy has given birth to modern sciences over the last cen-
turies. In the seventeenth century, natural science detached from phi-
losophy, growing into a fully qualified field of science on its own. In
the eighteenth century, the same happened to psychology as well as
to sociology and linguistics in the nineteenth century. In the twenti-
eth century, philosophy has played a large part in the development
of computer science, cognitive science, and research into artificial in-
telligence. (Grayling, 1999)

While the origin of science is sufficiently clear, it remains difficult
to describe the nature of science based on one generic model. De
Jong and Betti offer an approach to a generic definition that refers to
science based on the classical model4 of science. Here, a science is a
system S of propositions and concepts (or terms) which satisfies the
conditions listed below:

1. All propositions and all concepts (or terms) of system S address
a specific set of objects or deal with a certain domain of being(s).

2. There are a number of so-called fundamental concepts (or terms)
in system S.

3. All other concepts (or terms) occurring in S are composed of (or
are definable from) the fundamental concepts (or terms) defined
in 2..

4. There are a number of fundamental propositions in system S.

5. All additional propositions of S follow from or are grounded
in (or are provable or demonstrable from) these fundamental
propositions.

6. All propositions of S are true by definition.

7. All propositions of S are universal and necessary.

8. All non-fundamental proposition are known to be true through
their proof in S.

3 In the scientific context and in this thesis, knowledge is built out of theoretical rep-
resentations that serve as abstract images of the objective world. (Dodig-Crnkovic,
2004) Beyond the theoretical models, the meaning of the term knowledge may consist
of more dimensions like experience.

4 The term classical model refers to the model of the Greeks of the classical period.

24 background

9. All concepts (or terms) of S are adequately known. Non-fundamental
concepts are adequately known through their compositions (or
definitions).

(Jong and Betti, 2008)Despite the linear
definition in this

chapter, “there is no
general account of

science and scientific
method to be had
that applies to all

sciences at all
historical stages in
their development“
(Chalmers, 1999).

Dodig-Crnkovic (2009) recapitulates that “the Classical Model of
Science is a reconstruction a posteriori and sums up the historical
philosopher’s ideal of scientific explanation”.

In summary, in this thesis a science incorporates a well defined,
but not closed, set of specific concepts, propositions, and methods to
describe and explore a certain domain of being.

2.2 utility computing as business model

Utility

Utility Computing is concerned with offering computing as a util-
ity. Thereby, the term utility refers to the field of industry. In indus-
try, the term public utility (Britannica Online Encyclopedia, 2011) is
used for enterprises that offer certain classes of services to a wide
and heterogeneous range of consumers (e.g., consumers of electric
utilities). (Rappa, 2004) defines six common criteria to characterise
utilities, listed below.

• Necessity

Consumers depend on utility services to fulfil their day-to-day
needs.

• Reliability

The service provided by a utility must be readily available when
and where the consumer needs it.

• Usability

No matter how technologically complex they may be on the
production end, utility services are characteristically simple at
the point of use.

• Utilisation

Utilities are driven by the need to carefully manage utilisation
rates. User demand for utility services can fluctuate widely over
time and across the service region.

• Scalability

Utilities are commodity businesses. Therefore, utility services
can exhibit significant economies of scale that prefer larger providers
to smaller ones.

2.2 utility computing as business model 25

• Exclusivity

The economies of scale in a utility can benefit from a monopo-
listic provision of services.

The provision of Utility Computing services in this thesis is focused
on the utility criteria necessity, reliability, and utilisation. Usability is
estimated as a criterion of a specific service implementation in this
thesis. Scalability and exclusivity, on the other hand, are abstract eco-
nomic criteria in the context of Rappa. Their impact on service deliv-
ery is not examined in this thesis.

Business Model

As a first definition, Osterwaelder elaborates the term business model
based on an analysis of the combined expressions business and model.
This approach leads to the simple definition of “a representation of
how a company buys and sells goods and services and earns money”
(Osterwalder, 2004; Seppanen and Makinen, 2005). As a more precise
definition, Osterwaelder states:

“A business model is a conceptual tool that contains
a set of elements and their relationships and allows ex-
pressing a company’s logic of earning money. It is a de-
scription of the value a company offers to one or several
segments of customers and the architecture of the firm
and its network of partners for creating, marketing and
delivering this value and relationship capital, in order to
generate profitable and sustainable revenue streams.” (Os-
terwalder, 2004; Seppanen and Makinen, 2005)

Also, Osterwaelder mentions that there are ongoing discussions on
the demarcation of the terms business strategy, business model, and busi-
ness process model. Business models describe more concrete short-term
strategies for business development compared to business strategies.
Business strategies describe long-term strategies for business devel-
opment. Business process models specify the processes necessary to
implement the business described in a business model and guided
by a business strategy. As simplification, it is defined that strategy,
business models, and process models address similar problems on
different business layers. (Osterwalder, 2004; Seppanen and Makinen,
2005)

Utility Computing

As implicated by its name, Utility Computing depicts the vision of IT-
based service offers comparable to service offers of common public

26 background

utilities. In this thesis, Utility Computing is defined as generic business
model (Rappa, 2003; Foster et al., 2008) for service provision of IT-
based services that are offered to a broad range of customers and
accounted by service usage (Rappa, 2004).

From the point of view of a service provider, UC is about service
offers that are, due to real-time fluctuations in consumer demands
(Bunker and Thomson, 2006), enabled to scale dynamically and that
are accounted based on the actual resource usage occurring during
the processing of related service requests (Neel, 2002; Mendoza, 2007).
The core strategical aspects of UC offers that are inherited from the
implicit properties in business models of public utilities (cf. Section
2.2) are:

• Multiple differentiated customer groups;

• Resource scalability;

• Usage-centred pricing models;

• Reliability of quality agreements.

Taking the position of a service consumer, “the reduction of IT-related
operational costs and complexity“ (Yeo et al., 2006) is in focus. Both
sides, provider and consumer, target the optimisation of their gener-
ally underutilised IT resources (Andrzejak et al., 2002; Heap, 2003).
UC does not refer to any specific technical properties for service archi-
tectures or hosting environments.

Service Contract

In this thesis, it is assumed that customers and providers conclude
legal compliant contracts before service offers are used. It is assumed
that such contracts include agreements on usage-centred service pric-
ing, service billing, and processing quality. (Chee and Franklin, 2010;
Chou, 2011)

The agreement on processing quality incorporates the below listed
properties, defined in this thesis.

• Availability

The availability is determined from the provider’s point of view
as the time interval a service offer is technically usable conform
to the contracted conditions.

• Response time

Response time is determined from the provider’s point of view
as the time interval between initial service request receipt and

2.2 utility computing as business model 27

the terminal service request response drop out on the provider’s
perimeter.

• Data security

The properties of data security define the physical and organisa-
tional access restrictions to prevent unauthorised data access. To
prevent data loss, disaster recovery measures are agreed upon.

• Resource allocation limits

Minimum5 and maximum6 limits for the allocation of process-
ing resources on the provider side of the agreement are defined
to enable reliable cost estimations for both contracting parties,
while enabling the scaling of resource demands. The limitation
defines a range of resource occupation during the processing
of service requests (e.g., network bandwidth, processing cycles,
memory, and storage).

In addition, for processing quality violations monetary penalties are
agreed upon between customer and provider.

The properties concerning processing quality are explicitly not ad-
dressed as SLA in this thesis. An approach to handle SLA is presented
in Section 5.3.4.

Usage-Centred Pricing Model

As pricing model, in this thesis, an algorithm for the calculation of a
service’s gross price is defined. For example, a price model for coffee
Pc could be determined as the coffee’s price per weight pw multiplied
with the actual number of weight units consumed cw. The simple
price model for the example is then Pc = pw cw. More complex mod-
els might take into account certain discounts (e.g., for large quanti-
ties, specific service levels, or strategic customers). Pricing models are
build on corresponding pricing strategies, which are not considered
in this thesis. (Monroe, 2003)

Based on to the previous definition of pricing models the usage-
centred pricing models are introduced as a specific subgroup of mod-
els focused on dynamic pricing. Dynamic pricing is classified as a
class of models with complex gross price algorithms that represent a
direct relation between the gross price and the consumed amount of
resources during processing. (Bitran and Caldentey, 2003; Maglaras
and Meissner, 2006)

5 the customer’s point of view
6 the provider’s point of view

28 background

Dynamic models with market-adaptive pricing, where gross prices
of competitors are part of the pricing algorithm (e.g., in auctions), are
not considered in this thesis. (Cohen et al., 2008)

The term pricing model is used as a synonym for usage-centred pric-
ing models in this thesis.

Service Billing

In this thesis, the term billing is generically defined as the binding in-
formation about the gross price of a processed service request trans-
ferred in real-time from the service provider to the service consumer.
In this context, it does not include the generation and delivery of a
legal compliant invoice (e.g., on a monthly basis).

2.3 service-oriented computing as architectural model

Services in Utility Computing

In computer science the term service is used differently in many fields.
A common definition does not exist, but there are domain-specific def-
initions given. In the context of Utility Computing, the definition of
a service has to integrate the two viewpoints of economics and IT. As
Utility Computing is defined as business model, any IT service whose
technical implementation is enabled to be delivered as UC service (in
sense of scalability, pay-per-use and quality assurance) is addressed
by the service definition in this thesis. Therefore, the following, rather
abstract, service definition is given.

The term service represents a type of relationship-based interac-
tion between service consumer and service provider to achieve a cer-
tain solution objective (Liang-Jie Zhang, 2007). In other words, a ser-
vice represents a single unique interaction between consumer and
provider. Although this definition has been evolved from a technical
point of view, it conforms to the economically motivated definition of
Fitzsimmons and Fitzsimmons (2006) and to the one given by Groen-
roos (2000) from a marketing point of view.

To narrow the field of research, SOAs are chosen as reference soft-
ware architecture in this thesis. SOA introduces an approach to cre-
ate software architectures out of loosely coupled service components.
Software architectures that are based on the paradigm of loosely cou-
pling support the scalability and quality assurance characteristics of
UC. Each service interconnection implies a point of contact to dis-
tribute service requests to additional service instances or to interact
otherwise with the service request flow driven by predefined quality
criteria.

2.3 service-oriented computing as architectural model 29

Service-Oriented Architectures

SOAs (Erl, 2005; Bieberstein, 2006) introduce loose coupling of ser-
vice consumers and corresponding providers (Maximilien and Singh,
2005; Oasis, 2006) as paradigm for software architectures. Thereby,
SOA requires that the functionality a software application provides
is logically grouped into components on the level of software archi-
tecture. Those architectural components are represented by indepen-
dent source codes on the level of software implementation. To achieve
loose coupling within a software architecture, the service consuming
component looks up a service offering component in the service reg-
istry, where a service provider publishes its service offers.

The term service is not clearly defined in the domain of SOA. Most
authors think of services as a synonym for software components
(D Souza and Wills, 1998) that are accessible via web service interfaces
(Haas and Brown, 2004). Other authors use the term more strictly to
exclusively describe IT-based representations of business services on
the conceptual level of software architectures (Humm, 2008).

The following listing states the key principles that determine the
interface characteristics of SOA service offer.

• Abstraction

Services hide the details of their implementation behind ab-
stract interfaces.

• Autonomy

Services do not require any dependencies to other services to
be respected by their consumers.

• Reusability

The abstraction of service interfaces ensures its context-independent
reuse.

• Statelessness

Consumers are not required to respect the internal state of a
service offer.

Also, SOAs are not bound to a specific technical framework. One of
the most common is the Simple Object Access Protocol (SOAP)-based
web services framework (Booth et al., 2004). When SOA is referenced
within this thesis, SOAP-based web services are addressed.

Service-Oriented Computing

SOC (Papazoglou, 2003; Singh and Huhns, 2005) is an extension to the
model of Service-oriented Architectures. SOC consequently continues

30 background

Figure 3: Service-Oriented Computing Uses Workflow Languages for Ser-
vice Composition

the idea of SOA’s loose coupling. The loose coupling is continued
within a service component through the composition of services to
provide the service functionality. To enable service composition, SOC

introduces the abstraction layer of workflow languages to orchestrate
existing services to composite services like the Business Process Ex-
ecution Language (BPEL) (Andrews et al., 2003). Figure 3 illustrates
how services can be meshed in SOC illustrating a basic service cas-
cade, for example.

In this thesis, service cascades are defined as connected vertices in
a graph, where each connection represents a distinct type of service
usage, as illustrated in Section 1.3. They define a network of (most
times incompletely) meshed services that rely on each other to pro-
vide their services.

2.4 cloud computing as hosting model

2.4.1 NIST’s Cloud Definition

Cloud Computing “is a model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort
or service provider interaction.” (Mell and Grance, 2010)

Essential Characteristics

The cloud model of National Institute of Standards and Technology,
United States of America (NIST) promotes availability and is com-

2.4 cloud computing as hosting model 31

posed of five essential characteristics that are listed below. (Mell and
Grance, 2010)

• On-demand self-service

Service customers are able to allocate resources for service of-
fers without requiring human interaction with the service provider.

• Broad network access

Service offers are available through standard mechanisms over
common networks like the Internet.

• Resource pooling

Resource allocation takes place on an abstract layer. The service
consumer is not able to bind service processing to a specific
resource. Instead, resources are allocated on-demand out of a
resource pool to serve service requests.

• Rapid elasticity

Resources can be allocated quickly to enable fast scale in or out
of service capabilities.

• Measured service

Resource usage is monitored, (automatically) controlled, and re-
ported for service customers and the provider.

Service Models

Service offers based on Cloud Computing can be classified by their
offered type of service. NIST provides definitions for three types of
service, as listed below. (Mell and Grance, 2010)

• Cloud Infrastructure as a Service (IaaS)

Offering hardware resources located in data centres (e.g., servers,
storage, network) based on virtualisation technologies (e.g., VMware
(2011b), Xen (Citrix, 2011)) is defined as IaaS in this concept. Vir-
tualisation enables the separation of hardware resources into
smaller fractions, whereby each fraction offers the same virtual
hardware interfaces as an actual hardware. In this thesis, IaaS

focuses on server virtualisation. Such a server fraction is called
Virtual Machine (VM). Hardware resources can be allocated to
VMs when demanded, depending on the features of the virtuali-
sation technology used. In case of IaaS, the service interfaces are
the virtual hardware interfaces of the VMs.

32 background

• Cloud Platform as a Service (PaaS)

Platforms for software applications may be deployed based on
an IaaS layer (Marks and Lozano, 2010). Deployed are instances
of application servers combined to a cluster (cf. Section 2.4.2),
in order to balance the load of service requests. In case of PaaS,
the service interface is the administrative interface of the appli-
cation server (cluster).

• Cloud Software as a Service (SaaS)

Software applications may be deployed based on an IaaS or a
PaaS layer (Marks and Lozano, 2010). This strategy can ease fur-
ther deployment and scaling of multiple parallel instances of
such applications. In case of SaaS, the service interface for con-
sumers is the native interface provided by the deployed soft-
ware applications.

Deployment Models

The definition of NIST offers four types of deployment models. They
differ by the access rights for cloud usage. Private clouds are only
accessible by a closed consumer group restricted to a single organisa-
tion. Community clouds are used by closed consumer groups over-
spanning multiple organisations. Public clouds are open to be ac-
cessed by the public. Hybrid clouds are a mixture of the previously
introduced deployment models (e.g., an organisation operates a pri-
vate cloud and, in addition, uses public clouds to carry peaks on
demand). (Mell and Grance, 2010)

2.4.2 Classification by Workload Model

In addition to the definition of NIST, Cloud Computing can be clas-
sified by the processed workload. This addition refers to the origin
of the Cloud Computing definition by Greg Boss et al. (2007), Weiss
(2007), and Hayes (2008) as a pool of virtualised resources. In these
pools, two types of workloads are distinguished. This thesis intro-
duces a definition for such workload types, listed below.

• Parallel workloads

Parallel workloads are defined as service requests with a rela-
tion between processing algorithm and data set to be processed
as 1:n. In parallel workloads, a rather big amount of data sets
have to be processed and the result of the processing of a single
data set does not influence the processing of other data sets.

2.4 cloud computing as hosting model 33

• Sequential workloads

Sequential workloads are defined as service requests with a rela-
tion between processing algorithm and data set to be processed
as 1:1. In sequential workloads, a single data set is processed
and the result of the processing of this set may influence the
processing of other data sets.

This definition can be compared to the one blogged by Harris (2008)
and cited by Stanoevska-Slabeva et al. (2009).

Parallel Computing for Parallel Workloads

The processing workloads that are addressed by Parallel Computing
are classified as parallel workloads in this thesis. Parallel workloads are
long-running collections of similar computing jobs running without
user interaction, also known as batch jobs. (Andrzejak et al., 2002)

In the beginning, Parallel Computing was focused on the simulta-
neous distribution of computing operations onto the processors of
a single host computer (Almasi and Gottlieb, 1989). Hereby, large
problems are divided into smaller sub-parts which can be processed
simultaneously, thereby reducing the overall time to solve the prob-
lem. This basic concept of simultaneously distributing computable
problems was evolved to Cluster Computing (Bader and Pennington,
2001). In Cluster Computing, the processors of multiple computers
within the same administrative domain are used for simultaneous
calculations of sub parts of larger problems.

To overcome administrative domain boundaries and to intercon-
nect heterogeneous computing resources, Cluster Computing had been
evolved to Grid Computing (Foster and Kesselman, 2003). Grids use
the open standards of SOA to offer platform-independent interfaces
for the management of parallel workloads in heterogeneous environ-
ments.

Application Clusters for Sequential Workloads

In this thesis, the processing of sequential workloads is performed by
application clusters7. In the daily business context, sequential work-
loads often occur as short-running requests to SOA services. (Andrze-
jak et al., 2002)

Application servers (e.g., JBoss (2011), GlassFish (Oracle, 2011)) are
defined as technology-specific software frameworks offered by mul-
tiple vendors that are used to provide SOA services. These services

7 In this thesis, a cluster is defined as a group of servers that each offers identical
services and service requests are equally distributed among the servers.

34 background

are deployed within application servers to provide business logic to
service consumers. (Natis et al., 2008)

Multiple application server instances can be joined as High-Availability
(HA) or load-balancing clusters. HA clusters provide a cluster of appli-
cation servers, where a primary server processes service requests and,
in case of a failure, one of the redundant application servers takes
over the processing of incoming requests. In contrast, load-balancing
clusters provide the distribution of the overall request load to all avail-
able application servers. (Bourke, 2001)

In this thesis, application clusters are used as synonym for load-
balancing application server clusters.

2.5 service life cycle

Figure 4: Generic Service Life Cycle

Service life cycles aim to represent the evolutionary steps necessary
to evolve a service offer from a first business model to a mature and
widely used service implementation. Thereby, the description of the
evolutionary process as a cycle highlights the gap between the time
of decision - often based on incomplete market information - during
business planning and the time of service usage during operations,
where actual market feedback is gathered. Summarised, service life
cycles are feedback loops that enable continuous business improve-
ment.

In this thesis, a basic life cycle is required as generic origin for the
analysis of intersections to UC’s customer-service-resource relation.

The life cycle definitions of Liang-Jie Zhang (2007) and ITIL (Beard,
2008; APM Group et al., 2011) are consolidated to a generic repre-
sentation of a basic service life cycle. Resulting, the basic life cycle

2.5 service life cycle 35

contains three main cycle phases, as shown in Figure 4 and further
detailed in the following listing.

Business Planning

The life cycle phase of business planning addresses the service strat-
egy and service engagement, as defined in the following listing.

• Service strategy

Service strategy deals with the questions of where and how ser-
vice offers have to compete with other service offers. In this
process, costs and risks for a targeted service portfolio have
to be identified. Corresponding, for each service offer it has
to be determined how value can be created. This includes de-
cisions about the offered quality levels and expected consumer
behaviour in terms of service usage.

• Service engagement

Service engagement addresses make-or-buy decisions for sup-
portive services within a service cascade. Service offers from
other, maybe competing, service providers can be used to backup
or load-balance proprietary service offers. Or external service
offers can be used during service composition for feature com-
pletion.

Development

In the life cycle phase of development, the design and realisation of
a service’s implementation are in focus. In addition, this cycle phase
includes the management of the transition from a completed service
implementation to a deployed and running service instance. Both pro-
cess steps are defined corresponding to the following listing.

• Service design

Service design deals with the design of a software architecture
to enable the realisation of targeted service features. This ar-
chitecture is then transferred into a corresponding service im-
plementation. The design, transfer, and implementation process
considers the requirements on information security, service lev-
els, service continuity, service availability and provision capac-
ity.

• Service transition

Service transition subsumes all tasks which ensure that subse-
quent service operations reach the targeted service quality. This

36 background

includes the tasks of service validation and testing, inclusion in
knowledge, asset and change management, and deployment of
service releases.

Operations

The life cycle phase of service operations is focused on economically
efficient and technically effective service delivery. Incorporated into
this phase of the service life cycle is the support for consumers of
service offers. The management of the continuous improvement of
the overall service life cycle is also included. In addition, the manage-
ment of service billing is part of service operations, as defined in the
listing below.

• Service operations

The subject of operations includes a range of activities to en-
sure the technical accessibility and availability of service offers.
This includes a service desk to support consumers when experi-
encing problems during service usage. Traditionally, operations
is concerned with the technical management of all physical re-
sources (e.g., network, servers). The operations management ad-
dresses the daily business activities to operate the IT environ-
ment like backups or updates. Service operations also includes
application management. It is focused on the support of the ser-
vice life cycle with knowledge about design, implementation,
and maintenance of service implementations.

• Continuous service improvement

The continuous service improvement addresses the overall ser-
vice life cycle. As the name suggests, this step targets the ongo-
ing improvement and rising maturity of service offers and busi-
ness processes of the service provider. The step’s effectiveness
is dependent on a reliable service measurement and reporting
that continuously monitors and manages the targeted service
quality.

• Service billing

Service billing includes billing-related activities reaching from
accounting of service usage to the corresponding invoicing of
consumed efforts.

In this thesis, the consideration of service billing is simplified,
as described in Section 2.2.

2.6 summarising the research background 37

2.6 summarising the research background

Figure 5: Setting of the Scenery for Service Life Cycles in This Thesis

This thesis is concerned with the mapping of the customer-service-
resource relation in a generic life cycle for UC service offers in SOC ar-
chitectures hosted on IaaS (cf. Section 1.2). This thesis examines both -
technical and business - concerns of service providers regarding their
service offers.

From a business point of view, services are offered by providers
that choose the business model of Utility Computing (cf. Section 2.2).
Complementary, customers willing to consume the offered kind of
services exist. Customers and providers want to contract on usage-
centred service pricing, billing constraints, contract penalties, and
processing quality (cf. Section 2.2). It is assumed that there are multi-
ple groups of customers classified by their behaviour in service usage,
pricing expectations, and requirements on processing quality.

From a technical point of view, customers are consumers of service
offers. In this thesis, services are considered as part of a SOC archi-
tecture (cf. Section 2.3). This includes the possibility that services are
build dependent on other services and also that other services rely on
the provided services. In business applications, mainly services are
used which process sequential workloads (cf. Section 2.4.2), as shown
in an example service cascade by Bodendorf and Schobert (2003) in-
cluding, among others, service offers for route planning, car rental,
and claims notification.

The so far described service offers are deployed on an IaaS hybrid
Cloud Computing environment and are offered as public SaaS (cf. Sec-
tion 2.4). The IaaS environment may extend over multiple data centres.
Beside provider-owned private data centres, some of the demanded
resources may be integrated using public IaaS from third-party suppli-

38 background

ers. The resources provided by the IaaS may be used to provide more
than one public or private8 SaaS.

The previous text introduces UC service offers in SOC architectures
hosted on IaaS as subject-matter of service providers. In this thesis,
the term service is used as a synonym for this subject-matter.

Service providers create and offer services following a life cycle that
describes the process of service creation in terms of business planning
and development and service offering in terms of operations. From
provider to provider, life cycles can considerably vary in their level of
detail in which individual process steps are implemented. In this the-
sis, the chosen detail level of life cycle description is high (cf. Section
2.5) to generate a generic view of life cycles that may support most
common use cases. Figure 4 depicts the resulting generic life cycle for
this thesis. The implications of the provision of UC service offers in
SOC architectures hosted on IaaS for this generic life cycle are analysed
in Chapter 4.

8 Most service offers within a service cascade are not targeted on public use. They
are only offered as private supportive services (e.g., file compression or checksum
calculation), may be invoked out of several concurrent service cascades.

3
R E L AT E D W O R K

This chapter introduces related work and outlines why the results are
not sufficient for the problem statement in this thesis. The chapter is
divided into two parts. The first part 3.1 introduces core provision
models for utility computing platforms. In the second part 3.2, con-
cepts for the usage-centred assurance of service quality are presented.

3.1 provision models for utility computing platforms

In this chapter, three types of provision models are presented. The
types are distinguished by their primary research domain. For each
presented model, it is outlined what the major differences are com-
pared to the evolved component (cf. Section 5.2.2) and workflow model
(cf. Section 5.2.3) in this thesis.

3.1.1 Utility Computing/Cloud Models

Buyya’s InterCloud - Utility-Oriented Federation of Cloud Computing En-
vironments for Scaling of Application Services

Buyya et al. introduce an approach to a service-oriented architectural
framework consisting of clients brokering and coordinator services
that support application scheduling, resource allocation, and migra-
tion of workloads, shown in Figure 6.

Buyya’s Cloud Exchange (CEx) brings together service producers
and consumers by acting as a market maker. The CEx aggregates
infrastructure demands reported by the application brokers and com-
pares these demands against the available resources published by the
Cloud Coordinators. As part of the comparison process, the CEx sup-
ports competitive economic models - such as commodity markets and
auctions - within the trading process of Cloud services. The use of
CEx builds markets that are enabled to trade based on SLAs. In this
case, an SLA specifies metrics, agreed upon by all parties, that address
details of the service to be provided. To enable these markets, clients
of federated platforms need to instantiate a Cloud Brokering service
to dynamically establish service contracts with Cloud Coordinators

39

40 related work

Figure 6: Buyya’s Federated Network of Clouds Mediated by a Cloud Ex-
change (Buyya et al., 2010)

via the trading functions provided by the Cloud Exchange. (Buyya
et al., 2010)

The approach of Buyya et al. represents a well elaborated IT archi-
tectural point of view on Cloud Computing. As open research ques-
tions that lead beyond the InterCloud approach, Buyya et al. list two
issues. Buyya states that the information of SLAs should also be used
by the automated cloud management to raise the energy efficiency
of data centres. In addition, Buyya also states that in the future a
solution is needed to allow “adaptive system management by estab-
lishing useful relationships between high-level performance targets
(specified by operators) and low-level control parameters and observ-
ables that system components can control or monitor” (Buyya et al.,
2010). This thesis offers an approach (Heckmann et al., 2012b) to these
open questions, that is provided through the service broker (cf. Sec-
tion 5.2.2) and its underlying data model (cf. Section 5.4).

In comparison, this thesis also offers a more detailed look at tech-
nical workflows (cf. Section 5.2.3) and functional components (cf. Sec-
tion 5.2.2) for delivery frameworks.

Kertesz’s SLA-Based Resource Virtualisation Architecture

Kertesz et al. present a unified service architecture that builds on
the areas: agreement negotiation, brokering and virtualised service
deployment. The suggested architecture is shown in Figure 7 (MN:
meta-negotiator, MB: meta-broker, B: broker, ASD: automatic service

3.1 provision models for utility computing platforms 41

Figure 7: Kertesz’s SLA-Based Resource Virtualisation Architecture (Kertesz
et al., 2009)

deployment, S: service, and R: resource) and introduces an additional
meta layer for negotiations of SLA.

In opposite to this thesis, the approach of Kertesz et al. supposes
that service providers and service consumers meet on demand and
usually do not know about negotiation protocols, document languages
or infrastructure requirements of potential partners. (Kertesz et al.,
2009)

In Chapter 4 this thesis defines its focus on provider-consumer-
relations that involve non-automatic contracting before service usage.

Liu’s Architecture for Green Data Centres

Liu et al. introduce an approach to consolidate workload to pro-
vide energy savings in cloud computing environments while guaran-
teeing real-time performance for performance-sensitive applications.
The proposed architecture is shown in Figure 8. (Liu et al., 2009)

In opposite to this thesis, the approach of Liu et al. does not support
pay-per-use service cascades nor enable the management of different
service lines (cf. Section 5.3.5).

Marks & Lozano’s Cloud Computing Technical Reference Architecture

The Cloud Computing Technical Reference Architecture is a minor
part of the holistic Cloud Computing Reference Model of Marks and
Lozano (2010, p. 188). The holistic model offers an extended logical
cloud computing architecture that intents to broaden the tiers and
logical layers of cloud computing. This layered logical cloud comput-

42 related work

Figure 8: Liu’s Architecture for Green Data Centres (Liu et al., 2009)

Figure 9: Marks & Lozano’s Cloud Computing Technical Reference Archi-
tecture (Marks and Lozano, 2010)

ing model consists of layers of IT capabilities that must be virtualised
in order to realise a cloud computing architecture. The corresponding
Cloud Computing Technical Reference Architecture is introduced in
Figure 9.

The technical reference architecture provided by Marks and Lozano
demonstrates a basic1 component architecture. The core provision
model in this thesis offers more detailed information about compo-
nent relations and considers more UC-specific functionalities.

1 as intended by the authors that focus on their much more detailed holistic Cloud
Computing Reference Model

3.1 provision models for utility computing platforms 43

Mendoza’s Software Application Service Framework

Mendoza defines the properties of Software Utility Applications (SUAs)
(Mendoza, 2007, p. 107) as an extension to the definition of SaaS. The
primary advantages of SUAs are multitenancy, maintainability, and
measures to manage service quality (e.g., SLA, scalability, virtualisa-
tion).

Based on the definition of the Software Utility Applications Men-
doza evolves a Software Application Service Framework (sasf) (Men-
doza, 2007, p. 129).

Figure 10 shows how the sasf relates to the environment of a utility
computing data centre. (Mendoza, 2007, p. 143)

“The sasf provider will manage, maintain, and create
SLAs for other service providers that will use some of the
sasf-provided services. The sasf will incorporate Web ser-
vices management capabilities, which will form the basis
for managing Web services within the framework. [...] sev-
eral SaaS (or SUA) applications use services offered by
the sasf, such as metering, billing, and identity manage-
ment. The figure also shows another group of SaaS ap-
plications offering Web services to other applications us-
ing the Web services gateway, which provides protection
from malicious Internet attacks in the form of denial of ser-
vice and unauthorized access. The sasf functions like any
other software application. It uses all layers of the utility
computing environment starting with the infrastructure
services.” (Mendoza, 2007, p. 143)

The approach of Mendoza represents a well elaborated technical
point of view on service delivery laid out for software architectures
based on SOAP2. Compared to the results of this thesis, providers
need to deploy services that make active use of the sasf interfaces.
The component and workflow model (cf. Section 5.2) of this thesis
is defined to transparently offer UC features to services that are not
explicitly implemented as UC services. In addition, load-balancing is
considered as a major model property in this thesis.

Phan & Li’s Vertical Load Distribution via Multiple Implementation Op-
tions

Phan and Li examine enterprise cloud computing, where enterprises
may use an SOA to publish a streamlined interface of their business
processes.

2 The SOAP (W3C, 2007) is one of many protocol families to implement a web service
architecture (Booth et al., 2004).

44 related work

Figure 10: Mendoza’s Software Application Service Framework (Mendoza,
2007, p. 143)

“In order to scale up the number of business processes,
each tier in the provider’s architecture usually deploys
multiple servers for load distribution and fault tolerance.
Such load distribution across multiple servers within the
same tier can be viewed as horizontal load distribution.
One limitation of this approach is that load cannot be
distributed further when all servers in the same tier are
fully loaded. Another approach to providing resiliency
and scalability is to have multiple implementation options
that give opportunities for vertical load distribution across
tiers. [Phan and Li] described in detail a request rout-
ing framework for SOA-based enterprise cloud computing
that takes into account both these options for horizontal
and vertical load distribution.” (Phan and Li, 2010)

This approach - as shown in Figure 11 - is similar to the service line
approach of this thesis (cf. Section 5.3.5). This thesis exceeds Phan and
Li’s approach in the abilities of its scheduler/service broker, which
also takes economic aspects into account.

Sotomayor’s Virtual Infrastructure Management in Clouds

Sotomayor et al. have developed a lease management approach to
cloud resource schedulers. The implementation acts as a VM sched-
uler for a cloud management software or can be used on its own as a

3.1 provision models for utility computing platforms 45

Figure 11: Phan & Li’s Vertical Load Distribution via Multiple Implementa-
tion Options (Phan and Li, 2010)

46 related work

Figure 12: Villegas & Sadjadi’s Architecture for the Mapping of Non-
Functional Requirements (Villegas and Sadjadi, 2011)

simulator to evaluate the performance of different scheduling strate-
gies over time. The approach supports advance reservation “leases in
which resources must be available at a specific time; best-effort leases,
in which resources are provisioned as soon as possible, and requests
are placed in a queue, if necessary; and immediate leases, in which
resources are provisioned when requested or not at all.” (Sotomayor
et al., 2009)

The approach of Sotomayor et al. could be classified as a func-
tional subset of the service broker and load-balancer approach (cf.
Section 5.2.2) in this thesis. The separation of service broker and load-
balancer in this thesis offers additional economic scheduling of ser-
vice requests and service request routing including billing. Due to its
focus on sequential workloads, this thesis’s component model does
not deal with advance reservation of resources.

Villegas & Sadjadi’s Mapping of Non-Functional Requirements to Cloud
Applications

Villegas and Sadjadi evolve the design and implementation of an IaaS

cloud manager in such a way that non-functional requirements de-
termined during the requirements analysis phase can be mapped as
properties for a group of virtual appliances running the application.
The approach - shown in Figure 12 - aims to ensure that the expected
quality of service is maintained during execution and that it can be
considered during different development phases. (Villegas and Sad-
jadi, 2011)

3.1 provision models for utility computing platforms 47

The approach of Villegas and Sadjadi is focused on the life cycle
phases of development and operations, disregarding business plan-
ning. The approach does also not consider fault-tolerance, execution
cost or performance parameters such as processor, memory, network
and disk usage either. This thesis exceeds Villegas and Sadjadi ap-
proach in these points (cf. Section 2.5, 5.2).

Zhang’s Service Delivery Platform

Zhang et al. in detail describe their approach to deliver application
clusters for SOAP-based SOAs. One of their contributions is a brief def-
inition of a service delivery platform for SOAP services. As shown
in Figure 13, the platform consists of six horizontal layers and two
vertical layers. The Core Infrastructure Services layer offers extensive
services for managing physical IT resources including supporting soft-
ware (e.g., server, storage, network, operating system, database man-
agement system). The IT Service Management layer is based on the
Core Infrastructure Services to help manage the IT infrastructure effi-
ciently. (Liang-Jie Zhang, 2007, p. 312)

“The Horizontal Services layer supports common IT ser-
vices like Web application services, calendar services, col-
laboration services, etc. It also supports common business
services including human resources services, logistic ser-
vices, etc. The Vertical Business Services layer organizes
and maintains applications that can be used to implement
a specific business process or a solution for a specific in-
dustry. Some sample vertical services are loan services for
the banking industry and claim services for the insurance
industry.” (Liang-Jie Zhang, 2007, p. 313)

The Services Partnership Manager is a function module to manage
the relationships of the available service assets. The Value Added Ser-
vices layer organises and manages service integration based on hor-
izontal business services and vertical industry applications by lever-
aging the Services Partnership Manager. It provides services that are
customised to a specific customer’s need. The Service Membership
Management layer is responsible for the enablement of portal access,
business entity on-boarding, service provisioning and subscription.
The Service Lifecycle Management layer is responsible for monitor-
ing, metering, billing, and exception handling. (Liang-Jie Zhang, 2007,
p. 313)

The approach of Zhang et al. represents a well elaborated busi-
ness management point of view on service delivery laid out for SOAP-
enabled software architectures. As open research questions, Zhang et

48 related work

Figure 13: Zhang’s Layered View of a Service Delivery Platform (Liang-Jie
Zhang, 2007, p. 313)

al. indicate that “a service delivery platform should not only fulfil
functional requirements but also non-functional requirements - dif-
ferent Service Level Agreements” (Liang-Jie Zhang, 2007, p. 328).

In comparison, this thesis offers a more detailed look at technical
workflows and architecture. As a key feature, this thesis includes an
specific approach to SLA.

3.1.2 Grid Models

Foster’s Open Grid Service Architecture

The Open Grid Service Architecture (OGSA) (Foster et al., 2005) is
introduced as approach to define an architecture for Grid3 infrastruc-
tures based on the SOA paradigm. The main idea of OGSA is the expo-
sition of Grid management interfaces as services for SOAs. Figure 14

presents a non-exhaustive overview of the OGSA framework capabili-
ties.

While the framework itself does not relate to this thesis, the spec-
ification of OGSA is based on a detailed study of collected use cases
(Kishimoto, 2003; Foster et al., 2004; Von Reich, 2004; MacLaren et al.,
2006). These use cases are not based on a formal requirements analy-
sis, but they have been accepted by the Grid community as basis for
the OGSA standardisation. Altogether, they represent a wide spectrum
of scenarios describing business and scientific use of distributed com-

3 Grids are defined as highly distributed infrastructures for parallel computing work-
loads (cf. Section 2.4.2). (Foster and Kesselman, 2003)

3.1 provision models for utility computing platforms 49

Figure 14: Foster’s Open Grid Service Architecture Framework (Foster et al.,
2005)

puting applications, not restricted to parallel computing workloads
only. Section 4.4.1 analyses this use cases and extracts functional re-
quirements for the development of a core provision model for UC

service offers.

GRASP – An Architecture Enabling Grid-Based Application Service Provi-
sion

The Grid-based Application Service Provision (GRASP) project intro-
duces a software architecture for Application Service Provision (ASP)4

business models focused on Grid applications, as shown in Figure 15.
The developed GRASP middleware is designed to provide a high level
of scalability, reliability and security, advanced accounting function-
ality, quality of service, and resource management. (Dimitrakos et al.,
2002, 2003; Wesner et al., 2004)

Due to the similarities between UC and ASP , GRASP offers a set of
reusable requirement definitions for this thesis. Other aspects of the
GRASP approach are not reused, as the projects results are limited to
parallel computing workloads.

4 ASP can be seen as an predecessor of SaaS. It defines a 1:n relationship between a
service provider and its customers. Contracts between both parties are long running
and bounded to static pricing models, often flat rates. Like UC, ASP defines a business
model. (Smith and Kumar, 2004; Kim and Paek, 2005)

50 related work

Figure 15: Underlying Concepts of GRASP (Dimitrakos et al., 2002)

Figure 16: Höing’s Architecture for Secure Workflow Orchestration for
Cloud and Grid Services (Hoeing, 2010)

Höing’s Architecture for Secure Workflow Orchestration for Cloud and Grid
Services

Höing presents an orchestration architecture that facilitates the inte-
gration of stateful and stateless services across organisational bound-
aries. The approach aims to combine Web, Grid, and Cloud services
in a single workflow. (Hoeing, 2010)

“The architecture is based upon process modelling and
execution technologies originating from the business do-
main. It extends a standard fully WS-BPEL-compliant work-
flow engine by services that provide additional functions
during the actual workflow execution.” (Hoeing, 2010)

3.1 provision models for utility computing platforms 51

Figure 17: Architecture of the ICENI II Execution Environment (McGough
et al., 2006)

Höing’s approach offers a completely different solution architec-
ture compared to this thesis (cf. Section 5.2.3), although both start
in kin technical perspectives regarding SOA and the aspects of Cloud
Computing addressed by Höing.

ICENI - Imperial College e-Science Networked Infrastructure

The ICENI project introduces a concept for high-level abstraction of
scientific computing, as shown in Figure 17. To simplify the utilisa-
tion of Grid infrastructures, the project offers a framework consisting
of three components: a graphical composition tool, distributed com-
ponent repositories, and federating Grid middleware. ICENI also ad-
dresses pay-per-use features, as demanded by UC business models.
(Cohen et al., 2006; Darlington et al., 2006; McGough et al., 2006; Co-
hen et al., 2008)

The presented approach is determined to process parallel computa-
tions. ICENI clearly defines itself as a distributed computation frame-
work, it also touches interesting aspects with its pay-per-use approach
to composite components/applications.

3.1.3 Application Cluster Models

Arsanjani’s Service-Oriented Reference Architecture S3

Arsanjani et al. have evolved an SOA reference architecture based on
the evaluation of SOA projects conducted at IBM from 2003 to 2006. As
reference architecture Arsanjani et al. introduced a model of logical
layers, where each layer represents a business value perspective, as
shown in Figure 18. (Arsanjani et al., 2007)

52 related work

Figure 18: Arsanjani’s Service-Oriented Reference Architecture S3 (Arsan-
jani et al., 2007)

The approach of Arsanjani et al. is a good example for the require-
ments of service cascades in SOA. The presented reference architec-
ture, compared to this thesis, is rather abstract referred to its level of
detail (cf. Section 5.3.5). Also, it does not address service billing.

Urgaonkar’s Analytical Model for Multi-Tier Internet Services and its Ap-
plications

Urgaonkar et al. introduce an analytical model that should be able to
represent the behaviour of multi-tier Internet applications (Urgaonkar
et al., 2005a). The model is based on a network of queues, where each
queue represents one of the tiers within a multi-tier architecture. The
approach can be used to simulate session-based workloads, concur-
rency limits and caching at intermediate tiers.

In addition, Urgaonkar et al. have evolved a hosting platform archi-
tecture for multi-tier Internet services (Urgaonkar et al., 2005b) based
on the previously introduced analytical model. The hosting platform
architecture is shown in Figure 19 (Sentry: binding of sessions to an
application’s server pool including SLA-based flow control, Capsule:
component of an application, Nucleus: component for Capsule’s per-
formance monitoring, Control Plane: dynamic provisioning of servers
to individual applications).

With the presented approach Urgaonkar et al. address simple UC

scenarios. The approach does not take into account providers with
multiple data centres, service billing or service cascades.

3.2 usage-centred assurance of service quality 53

Figure 19: Urgaonkar’s Hosting Platform Architecture (Urgaonkar et al.,
2005b)

Older Models

Ninja (Gribble et al., 2001; von Behren et al., 2002; Welsh and Culler,
2003) is a project that evolved an approach to application server clus-
ters. The approach enhances the idea of application clusters and in-
troduces features to host distributed and composed services.

Océano (Appleby et al., 2001; Fong et al., 2002; Pazel et al., 2002) in-
troduced an approach to dynamic load-balancing in physical server
clusters for multi-customer hosting. The approach focuses on the han-
dling of individual SLA per customer.

3.2 usage-centred assurance of service quality

The specification of quality of service offers can be done on vari-
ous abstraction levels. This thesis aims to assure service quality on
all OSI layers, herein defined as horizontal layers. With its data model,
Business Service Level Agreement (BSLA), usage pattern, and a de-
cision tree (cf. Section 5), this thesis discusses and offers a vertical
approach to service quality assurance. Related work discussed in this
chapter reach from the categorisation of service quality to the control
of service quality in related fields of computer science.

3.2.1 Categorisation of Quality of Service, Experience, and Business

A categorisation for quality metrics for IT services is introduced by
Van Moorsel (2001); Machiraju et al. (2002). The approach is based on
the assumption that technical metrics, such as availability, are not suf-
ficient to evaluate service quality. As enhancements, Van Moorsel et

54 related work

al. propose additional metrics that are based on user experience and
business measures. All quality metrics are distinguished into three
categories, as listed below.

• Quality of Service

The Quality of Service (QoS) category is defined from the point
of view of service providers. QoS involves all technical metrics
to ensure that resource usage complies to given technical thresh-
olds. For example, this includes metrics concerning (provider)
availability over time or performance indicators like Central Pro-
cessing Unit (CPU) load. In addition, Van Moorsel et al. also dis-
tinguish technical metrics monitored at operating system layer
(e.g., memory capacity or availability) and process layer (e.g.,
memory usage or availability).

The motivation for Van Moorsel’s et al. sub-classification of op-
erating system layer and process layer is not clear. The given
examples seem to be rather arbitrary and trying to avoid inter-
sections of metrics, while intersections might be useful. Given,
intersections are useful, sub-classification might not be.

• Quality of Experience

The Quality of Experience (QoE) category is defined from the
point of view of service consumers. Like QoS, QoE is concerned
with the monitoring of technical metrics to track given technical
thresholds in order to ensure that service usage complies to cer-
tain quality demands. For example, this includes metrics con-
cerning (consumer) availability over time or average response
time. In addition, QoE also includes usability metrics.

Van Moorsel’s et al. inclusion of usability metrics seems incon-
sistent. Moorsel’s et al. do not offer any advice how these us-
ability metrics should be monitored.

• Quality of Business

The Quality of Business (QoBiz) category is defined from the
point of view of service providers. QoBiz metrics are focused
on economic thresholds like request price, resource costs, or re-
quest failures.

Van Moorsel’s et al. classification of request failures as QoBiz

seems inconsistent. As a technical measure, it should be classi-
fied as QoS.

Figure 20 illustrates the relations between QoS, QoE, and QoBiz from
the point of view of a service provider. Service providers expose their

3.2 usage-centred assurance of service quality 55

Figure 20: QoS, QoE, and QoBiz from the Point of View of a Service Provider
(Van Moorsel, 2001)

QoS metrics to service consumers, called customers in Figure 20. Un-
less consumers pay for service consumption, they propagate their QoE

metrics to the service provider. QoBiz relies on the gathered costs and
cash flow metrics to calculate its economic metrics. QoS and QoE are
analysed to adapt future QoS offers.

This thesis considers the given categories for quality metrics for
services. In Section 4.3.1, this thesis improves Van Moorsel’s et al. cat-
egorisation and offers a detailed definition of service quality in the
work’s context. The work does not cover aspects of QoS/SLA ontolo-
gies (Dobson and Sanchez-Macian, 2006).

3.2.2 Quality Assurance in Cloud Computing Environments

This research offers an approach (cf. Section 5) to technically converge
the quality-related ontologies of service, experience, and business, as
introduced by Moorsel et al. (cf. Section 3.2.1). None of the further dis-
cussed related work offers such a convergence approach to QoS, QoE,
and QoBiz. The following chapter introduces approaches for quality
assurance in addition to the models presented in Section 3.1.

Quality Assurance in Cloud Computing

Nathuji et al. (2010) introduce an approach to a cloud system that is
designed to provide quality assurances for application performance
deployed in virtualised machine pools. The quality control should be
gained by the use of a multi-input multi-output model that captures

56 related work

interference effects to drive a closed loop resource management con-
troller. The controller meets specified performance levels for each VM

by interpreting application feedback. Applications can specify levels
of QoS, paying more for higher QoS levels. Nathuji et al. predict that
this approach will lead to an overall improved cloud efficiency and
utilisation. (Nathuji et al., 2010)

Stantchev and Schroepfer (2009) present a three step approach to
SLA assurance in business processes hosted in cloud environments.
The first step of their approach is the formalisation of the business
process requirements, on the one hand, and of the service capabilities
on the IT infrastructure side, on the other hand. In their approach,
Stantchev and Schröpfer use a predefined service level objective struc-
ture and predefined non-functional property terms. The second step
is the negotiation of IT infrastructure capabilities. Therefore, different
load hypotheses and the performance metrics of the individual tech-
nical services are used in order to find a fitting resource for service
deployment. In the last step of the approach, at runtime the SLA is
controlled on the IT infrastructure level using transparent parallelisa-
tion based on multiple service instances. This replication ensures ser-
vice levels regarding response time, transaction rate, throughput and
availability, respectively reliability. (Stantchev and Schroepfer, 2009)

Both evolved models, the one evolved by Nathuji et al. and the
model of Stantchev and Schröpfer, can be compared to the Service
Broker approach (cf. Section 5.2.2) in this thesis. The work of Nathuji
et al. more consistently works out a decision model for its resource
management controller. Stantchev and Schröpfer work offers a more
detailed definition for performance metrics of individual technical
services. In comparison to both approaches, the benefit of the Ser-
vice Broker is its embedding in the overall Core Provision Model (cf.
Section 5.2) introduced within this thesis.

Quality Assurance in Grids

In Grid Computing large amounts of data have to be distributed over
several computing systems so that parallel calculations on the data
slices accelerate the overall processing of the data compared to the
processing on a single computing system. To control the distribution,
processing, and result consolidation, most grid architectures provide
an architectural component called broker. The broker sometimes also
offers billing or marketplace features like auctions and bidding. Dif-
ferent approaches for these brokers are known to accelerate process-
ing of multiple parallel and/or sequential workloads5, for example

5 Logical group of calculations, also referred to as job.

3.2 usage-centred assurance of service quality 57

using simple resource reservation or considering the problem as a
queueing system.

Afzal et al. (2008) propose a scheduling algorithm for Grid Comput-
ing frameworks. This approach claims to minimise the execution costs
of workflows while ensuring that their associated QoS constraints are
satisfied. The algorithm handles the resources as a queueing system,
seamlessly routing the workflows through the resource network. The
approach promises to not require performance prediction nor nego-
tiation of advance reservations for every stage of the workflow. The
predictions should not only be available for tested applications, but
also for future workloads of new applications. The algorithm aims to
guarantee QoS within required confidence bounds for the end-to-end
execution of workflows. (Afzal et al., 2008)

In comparison to this thesis, the approach of Afzal et al. and other
grid broker approaches (cf. Section 3.1.2) does not sufficiently cover
the relation between resources, services, and consumers introduced
in this thesis (cf. Section 4.2).

Quality of Service in Web Service Middleware

On the application layer, web service orchestration, as introduced in
Section 2.3, deals with the challenge of quality control in multi-tier
service cascades.

Zeng et al. (2004) present an approach to a QoS-enabled middleware
supporting quality driven web service compositions. The approach
comprehends a service quality model to evaluate the overall quality
of (composite) web services. In addition, the approach offers two ser-
vice selection approaches for composite service execution. Zeng et al.
have implemented a platform based on their approach that supports
the definition of service ontologies and the specification of composite
services using statecharts. (Zeng et al., 2004)

In comparison to this thesis, the introduced QoS approach of Zeng
et al. is not able to assure service quality per consumer in meshed
service cascades. It only offers a global QoS driven service selection
approach that is able to control the average service quality of a service
cascade.

Quality of Service in Networks

Examining approaches in the field of computer networks, the under-
standing of QoS is restricted to control attempts on the network layer
itself. Typical examples for this perspective are the works of Shigang
and Nahrstedt (1998), Wolski et al. (1999), or Xipeng and Ni (1999).
As an exception to the network focus, the project MDCSim (Lim et al.,

58 related work

2009) offers an approach to a multi-tier data centre simulation, but fo-
cuses its outcomes onto the comparison of Infiniband and 10 Gigabit
Ethernet network technologies.

Quality in the Context of Green IT

In Green IT, the focus lies on the reduction of power consumption
in data centres. Green IT attempts to achieve this goal through the
consolidation of hardware servers. While optimising the number of
hardware servers, Green IT has to assure service quality to process
given workloads.

Approaches for load prediction of servers in a single data centre are
shown by Speitkamp and Bichler (2010) using historical data analysis.
Bi et al. (2010) perform load prediction using a non-linear optimisa-
tion model. Another approach for single data centres is shown by
Kusic et al. (2008) based on a limited lookahead control framework.
Wang introduces an approach (Wang and Wang, 2010) to combine
server consolidation and dynamic voltage and frequency scaling. Fre-
itas et al. (2010) show an approach to service level management in
distributed infrastructures, including QoS translation and support for
self-adaptation. Load balancing on the level of data centres within
and between client devices is introduced by Peoples et al. (2011).

3.3 summarising the related work

Related work divides into the two main sections, one addressing provi-
sion models in Section 3.1 and the other containing related approaches
for usage-centred assurance of service quality in Section 3.2.

Section 3.1 introduces related provision models from the fields of
research in Utility Computing and Cloud Computing. In addition,
models from Grid Computing and Application Clustering are pre-
sented.

The models from the field of Utility Computing and Cloud Com-
puting offer well elaborated business management or IT architectural
points of view on Cloud Computing. The open research questions
raised in the publications of the authors address the detailed explo-
ration of the non-functional information of SLAs as one alternative
to establish a useful relationships between high-level performance
targets and low-level infrastructure metrics. Other main aspects re-
lated work does not address are the modelling of pay-per-use service
cascades, the management of different service lines, or support for
economically prioritised load-balancing.

In the field of Grid Computing, the models do not address sequen-
tial workloads, but are analysed due to their load-distribution simi-

3.3 summarising the related work 59

larities. Here, fundamental requirements can be gained by analysing
the publications about model building of established authors.

Models of application clusters are analysed due to their history
in SOA. Analysed models do not cover multiple data centres, service
billing, or service cascades.

Section 3.2 introduces a categorisation of quality of service, expe-
rience, and business. In addition, the models of quality assurance in
the fields of Cloud Computing, Grid Computing, web service middle-
ware, networks, and green data centres are analysed.

Analysis of related work in the field of quality assurance in Cloud
Computing environments reveal that the known approaches can be
compared to the Service Broker approach beside its embedding in the
overall provision model. Approaches in the field of Grid Computing
do not cover the relation between resources, services, and consumers
addressed in this thesis. The work analysed in the field of web ser-
vice middleware is not able to assure service quality per consumer in
meshed service cascades. Work in the field of networks is restricted
to control attempts on the network layer itself. The focus of green
data centres lies on the reduction of power consumption through the
consolidation of hardware servers. To reach this goal, approaches for
load prediction, load balancing, or service level management are de-
scribed in different publications. None of the analysed approaches is
able to cover the relation between resources, services, and consumers,
as introduced in this thesis.

Summarising the analysis of related work, publications of other au-
thors do not address the usage of non-functional information detailed
in SLAs to establish useful relationships between high-level perfor-
mance targets and low-level infrastructure metrics, in order to cover
the relation between resources, services, and consumers.

Part II

C O N T R I B U T I O N S

4
R E Q U I R E M E N T S C O N C E R N I N G A G E N E R I C
S E RV I C E L I F E C Y C L E

Regarding its service offers, the basic properties of the UC business
model (cf. Section 2.2) are to serve differentiated customer groups, to
scale resources on demand, to price customers by usage, and to keep
reliable quality agreements. These properties target the core relation
of UC between customer, service, and resource.

This chapter analyses the requirements of the UC business model
concerning a generic life cycle for SOC service offers hosted on IaaS

(cf. Section 2.6). Also, it introduces the specific requirements of the
UC-specific relations inside a generic service life cycle (cf. Section 4.2),
the UC-specific requirements concerning provision quality control (cf.
Section 4.3), and the primary requirements on provision platforms (cf.
Section 4.4). In Section 4.5, the results of the chapter are summarised.

4.1 research methodology

As introduced in Section 2.1.1, this thesis examines the hypothesis
that an improved representation of the core relation of Utility Com-
puting within a generic service life cycle leads to an all in all more
cost efficient service provision. To achieve such a goal, a core provi-
sion model, a concept for usage-centred assurance of service quality,
and a resource and cost simulation model are modelled.

As preparation of the modelling, this chapter analyses the require-
ments in the context of this thesis. In Section 4.2, requirements of
the relations inside a service life cycle are collected based on related
work and the project expertise of the author, previously introduced
in Section 1.1. The conception of service levels and pricing for a di-
verse set of services affects the hole service life cycle. Business man-
agers, IT architects, and operations managers need a common ground
to exchange information about planned and deployed service offers.
Out of this initial position, the publications addressing life cycles and
experiences with service life cycles are analysed for their internal re-
lations relevant in the context of this work.

In Section 4.3, the control of provision quality for SOC service offers
hosted on IaaS is analysed. Based on the outcomes of the analysis of
related work in Section 3.2.1 and in cooperation with business part-
ners, the section further more analyses service quality and service

63

64 requirements concerning a generic service life cycle

level agreements in the context of Utility Computing. The analysis
of service level agreements starts with the definition of SLA in the
context of this thesis based on related work and project expertise of
the author. The feasibility of business processes is analysed based on
requirements from business partners.

In Section 4.4, the requirements on provision platforms are anal-
ysed based on related work in the fields of Grid Computing and
known industry standards. The functional requirement extraction is
based on the work of the OGSA community and the GRASP project.
The industry standards ITIL and COBIT are analysed for requirements
from the operations perspective.

4.2 relations inside a service life cycle

Figure 21: Overview of the Relation Between Customer, Service, and Re-
source

This chapter analyses the mapping of the customer-service-resource
relation within a generic service life cycle for SOC service offers hosted
on IaaS, as shown in Figure 21. To converge to the current represen-
tation of the UC-specific relations in a generic life cycle, defined in
Section 2.5, the Section 4.2.1 analyses the relations in the cycle phase
of business planning from the point of view of a business manager.
The analysis is continued in Section 4.2.2 from the point of view of
an IT architect in the cycle phase of development. In Section 4.2.3,
the customer-service-resource relation is analysed from the point of
view of an operations manager in the corresponding cycle phase of
operations. Section 4.2.4 summarises the results of the previous sec-
tions and outlines the customer-service-resource relation giving an
example.

4.2 relations inside a service life cycle 65

4.2.1 Cost-Price-Customer Relation

The life cycle of UC service offers is analysed from the point of
view of business managers in the cycle phase of business planning.
From this economic point of view, the pay-per-use pricing models
in UC business models increase the interdependence between costs
of service delivery, achievable price for the service, and the expected
number of customers in conjunction with their estimated usage inten-
sity.

In the following, the results of the analysis of the cost-price-customer
relation, as depicted in Figure 22, are presented.

In opposite to other business models, UC depends on price calcu-
lations at runtime (Mendoza, 2007, p. 5) based on the customer’s re-
source consumption, shown as part of relation RCS between customer
and service. For service providers it might be interesting to distin-
guish three cases during price calculation (Liang-Jie Zhang, 2007, p.
178), defined as:

Relation RCS

• Per-standard-use price

In this case, the service request has been processed success-
fully with a service request response providing the expected
results, below the defined maximum response time. Also, the
contracted maximum amount of simultaneously consumable re-
sources, defined as standard-conform use, is not exhausted. The
allocated resources during processing are billed based on the
contracted price scale for standard-conform service use.

• Per-overrun-use price

This case is similar to the previous per-standard-use price case.
The service request is also successfully processed. In opposite
to the per-standard-use price case, the contracted maximum
amount of simultaneously consumable resources is exhausted
during request processing. In result, the allocated resource dur-
ing processing are billed due to the contracted price scale for
non standard-conform service use.

• Service level penalties

In this case, the processing of the service request failed. Service
requests can fail in terms of request loss, violation of maximum
latency, or other metrics agreed in the SLA (Buyya et al., 2011,
p. 305). Optionally, the causes of failure can be provided with

66 requirements concerning a generic service life cycle

individual penalties. In this thesis it is estimated that monetary
penalties are issued to the customer.

Correspondingly, during price scale building a suitable unit of con-
sumption has to be defined, shown as part of relation RSR between
service and resource. A unit of consumption represents a measurable
fraction of a certain resource (e.g., bytes of memory, cycles of pro-
cessor time). Corresponding, for each unit of consumption, costs per
unit have to be calculated. Therefore, the costs per physical host have
to be determined. The resulting relation attributes are defined as:

Relation RSR

• Per-unit-of-consumption costs;

• Per-physical-host costs.

Essential for the effective operation of the relations RCS and RSR are
the knowledge, characterisation, and transfer of the customer’s usage
behaviour between acting parties within the service life cycle (Men-
doza, 2007, p. 59). For price scale building business managers have to
characterise the estimated usage behaviour of future customers intro-
duced as UP1. Otherwise, it will not be possible to make proper cost
predictions resulting from estimations on resource consumption by
IT architects and/or operations managers. Without cost estimations,
scale effects cannot be considered adequately. For contracting - espe-
cially when separate overrun price scales or service level penalties are
agreed - the contracted amount of standard usage referred to as UP2

has to be characterised. In the case of billing, the actual amount of
consumed resources has to be characterised as usage and transferred
to the billing instance. This observed usage is referenced as MU1. The
relevant types of usage in the cost-price-customer relation are defined
as:

Types of usage

• Estimated usage as UP1;

• Contracted usage as UP2;

• Observed usage as MU1.

Both usage characterisations, UP1 and UP2, describe expected usage
behaviour. In addition, MU1 describes monitored usage behaviour
including resource consumption metrics. Both types of usage charac-
terisation are defined as:

4.2 relations inside a service life cycle 67

Definition of expected usage as UP

• Usage complexity classifications as UCC

For the classification of usage behaviour the central aspect is
the ability to describe the complexity of usage, as this indicates
the prospective resource consumption during processing. For
example, a provider could define two classes of file upload be-
haviour to his document management service. Let UUCe1 be the
behaviour of a group of file uploaders1 that only upload large
text documents and let UUCe2 be the behaviour of a group of
file uploaders that mainly upload small binary files like pic-
tures. The amount of processing resources used for indexing
significantly varies between UUCe1 and UUCe2.

• Average usage frequency per interval as UF

Beside the ability to describe the complexity of usage, the fre-
quency of this usage is important for the description of usage
behaviour. For example2, given the previously introduced clas-
sification UUCe1, the group of file uploaders showing the usage
complexity UUCe1 use the document management service once
per minute in mean, assuming normal distribution, referred to
as UFe1.

• Usage schedule of UFs associated with UCCs

As usage behaviour may vary over time, it can be described
by utilising a schedule that consolidates the usage complexity
classification and the usage frequency for a certain group of
users showing varying usage behaviour over time. For exam-
ple3, given a group of users that use the example document
management service with the usage complexity UUCe1, this
group use the service within the working hours with the us-
age frequency UFe1. The hour before lunch and the hour before
leaving work are peak hours with the usage frequency UFe2

with five uploads per minute in mean.

Definition of monitored usage MU

• Service requests processed

Similar to UP’s UF, service requests processed describes the quan-
titative usage behaviour for a given interval. MU describes the
number of processed service requests. In addition, when usage

1 Users that send files to a service.
2 The example is a basic abstraction from the services of the business partners.
3 The example is an advanced abstraction from the services of the business partners.

68 requirements concerning a generic service life cycle

Figure 22: Relations Between Price, Cost, and Customer in a Generic Service
Life Cycle

behaviour varies over time a schedule can be extracted from the
monitored information and added to the MU.

• Resource consumption per request

In addition to the request amount, MU contains the metrics
of the actual resource consumption per service request for the
given interval. Typical resource metrics for monitoring can be
processing cycles, memory use, disk allocation, or power con-
sumption (Buyya et al., 2011, p. 421). This metrics are used for
service billing and cost calculations (Mendoza, 2007, p. 132).

The previous analysis reveals two issues in the cost-price-customer
relation. At runtime, the relation RCS depends on the analysis of a
formal description of MU1 for its price calculations and optional eco-
nomic resource capacity planning. At time of business planning, rela-
tion RCS depends on the reliable prediction of MU1 based on a formal
description of UP1 for cost estimations. At time of contracting, rela-
tion RCS depends on a formal description of UP2. At this point, it can
be stated that a formal description of service usage is an essential, but
missing part of the cost-price-customer relation.

4.2.2 Consumer-Service Relation

The life cycle of UC service offers is analysed from the point of view
of IT architects in the cycle phase of development. From this techni-
cal point of view, the application of UC business models increases
the probability of services to be used by a higher fluctuating number
of users with more inhomogeneous usage behaviour, while the com-
plexity of service cascades and the claim for the reliable prediction
of resource demands increases driven by business manager demands.
To enable pay-per-use pricing models, the key factors in UC service

4.2 relations inside a service life cycle 69

development are to keep predicted resource demands and to comply
with planned service levels avoiding monetary penalties.

Figure 23: Relations Between Consumer and Service in a Generic Service
Life Cycle

In the following, the results of the analysis of the consumer-service
relation, as depicted in Figure 23, are presented.

The analysis of the relation between a service and its consumer
starts at the core relation, referred to as RC. Consumers are grouped
corresponding to their usage behaviour (Liang-Jie Zhang, 2007, p.
3). It is assumed that service contracts consist of four major parts
that define the legal conditions, the service functionalities, the non-
functional technical properties, and the service pricing (Buyya et al.,
2011, p. 601). Relation RC represents the non-functional technical con-
tract properties per consumer group, introduced as service level. The
specification of the classification of service levels is defined4 as:

4 The definition is based on the requirements analysed in the context of the business
partners.

70 requirements concerning a generic service life cycle

Service level classification

• Maximum latency

Specifies the maximum acceptable latency for the interval be-
tween the receipt of a service request and the return of the pro-
cessed service request response by a service provider.

• Average service availability per interval

Specifies the minimum experienced average availability of a ser-
vice offer conform to the terms specified for a certain service
level.

• Physical location restrictions

Specifies identifiers of the allowed physical locations for the pro-
cessing of service requests corresponding to legal requirements
of the service customer.

• Backup specifications

Specifies the demanded procedures for the preparation and stor-
age of data copies designated for permanent storage on the re-
sources of the service provider for future disaster recovery.

The relation RS represents the relations between services among each
other. RS reflects the interdependencies of a given service with the ser-
vice itself as root of the service cascade. The relation RS is determined
by the software architecture of a service offer.

As second phase of the service life cycle, development retrieves its
requirements from the previous phase of business planning.

“[...] new data, which includes usage patterns, will be
added to the list of things to be considered [by IT archi-
tects]. By looking at both functional and usage require-
ments, a design for an on-demand IT infrastructure can
be implemented to eliminate problems such as underuti-
lized resources and low return on investments.” (Men-
doza, 2007, p. 228)

The estimated usage UP1 is passed on from business planning to de-
velopment in relation RB1.

Further in the life cycle, development passes on its service imple-
mentation as deployment sets and a generic usage description as part
of the relation RO, defined as:

4.2 relations inside a service life cycle 71

Relation RO

• Allocation of deployment sets

A deployment set represents all technical resources (e.g., binary
files, configuration files, data collections) that are necessary to
instantiate the technical service offer.

• Description of generic usage as GUC for the developed service
cascade

– Usage complexity classifications as UCC

Abstract description of the load-dependent resource de-
mand during the processing of a service request.

– Generated usage intensity

Description of the quantitative and qualitative usage of
supplying service offers as UPSm m = {1..r}.

The key issue in service development is the inclusion of estimated us-
age behaviour into the processes of quality assurance, as previously
stated by Mendoza (2007). This inclusion of usage behaviour enables
the testing of actual resource demands continuously during devel-
opment, and therefore provides the basis for early revision of cost
estimations in business planning.

4.2.3 Service-Resource Relation

The life cycle of UC service offers is analysed from the point of
view of operations managers in the cycle phase of operations. From
this technical point of view, UC service offers have less predictable
resource demands due to the increasing probability of services to be
used by a higher fluctuating number of users with more inhomoge-
neous usage behaviour5. While the complexity and interdependencies
of and in between service cascades rise, it becomes more challenging
to comply with planned service levels avoiding monetary penalties.

In the following, the results of the analyses of the service-resource
relation, as depicted in Figure 24, is presented.

5 Due to the requirements gathered by the business partners.

72 requirements concerning a generic service life cycle

Figure 24: Relations Between Service and Resource in a Generic Service Life
Cycle

The analysis of the relation between a service and its available re-
sources starts at the core relation, referred to as RR. Service instances
are deployed on physical hosts of certain resource groups. Resources
of hosts are grouped by their non-functional operations properties,
defined in the service level classification in the following. Hosts are
treated as group of resources like processing time, memory, or storage
space.

Service level classification

• Average maximum latency

Specifies the average of the maximum experienced latencies of
service request responses hosted on a resource for a certain in-
terval.

• Average service availability per interval

Specifies the average of the minimum experienced availability
of a resource for a certain interval.

• Physical location

Represents an identifier for the physical location of a resource.

• Backup properties

Specifies the available procedures for the making and storage of
copies of data disposed for permanent storage on the resources
of the service provider for future disaster recovery.

The relation RS represents the relations between services among each
other, as introduced in Section 4.2.2. The analysis of the service-resource
relation adds the global interdependencies of service cascades to RS.
This includes the interdependencies among service offers as well as
the interdependencies among service levels, as both are competitors
for the available resources.

4.2 relations inside a service life cycle 73

The observed usage MU1 is passed from operations to business
planning in relation RB2.

Backward in the life cycle, operations offers a technical interface
for provision platform interaction to enable service deployment. The
provision of this interface is represented by relation RD.

4.2.4 Outlining the Relation Between Customer, Service, and Resource

This section subsumes the previous results giving an example (Heck-
mann and Phippen, 2010). The example addresses the previous dis-
tinctly analysed views on the customer-service-resource relation (cf.
Section 4.2.1, Section 4.2.2, and Section 4.2.3) and merges them into a
consistent view on this relation in a generic life cycle for UC offers.

Let a service provider be planning to offer a new service. The ser-
vice should be provided based on web service technologies (Haas
and Brown, 2004) via the Internet. The business model for the service
offer conforms to the model of UC. During business planning, the
business manager expects three market segments the service could
be offered to economically successful. After the analysis of typical
usage behaviour of representative customers within the market seg-
ments, these usage expectations are given as UP1m m = {a, b, c}.

IT architects and operations managers can now provide their esti-
mations of resource consumption as MU1. This resource consump-
tion is the basis for cost estimations on the planned service offer.
This enables business managers to calculate price scales for the iden-
tified market segments. In addition to the price scale for each mar-
ket segment, two service levels per market segment are defined as
SLmn n = {1, 2}. Summarised, the standard scenario for service intro-
duction is Sst = {UP1m, SLmn}. In addition, business managers want
to analyse a best case scenario, introduced as Sbc, and a worst case
scenario, referred to as Swc, with constant SLmn, but varying UP1m.

During development of the service cascade, the IT architect verifies
and optionally adapts his previous resource consumption estimation
MU1. This enables early quality assurance and prevents from unde-
tected rising of future operations costs (e.g., in cases where the pro-
cessing of service requests requires more resources or in cases where
other service offers are reused in the service cascade and therefore
new costs and/or resource dependencies arise).

During operations, the operations manager needs to manage the
provision quality of all concurrent service offers hosted by the service

74 requirements concerning a generic service life cycle

provider. The management of the provision quality at runtime is sub-
ject to Section 4.3. Beside the runtime management, also a continuous
capacity planning is essential to keep provision quality on the long
term. As previously done in business planning, S′p p = {wc, st, bc}
are estimated per service offer as future scenarios. In addition to S, S’
also takes UP2 as contracted usage into account.

The example reveals the importance of an integrated view on the
customer-service-resource relation for UC service providers. The miss-
ing of a well documented description of such a consistent view is
introduced as problem P

1b in Section 1.3. This thesis proposes to
evolve a comprehensive usage-centred data model in order to map
the gained analysis results in a reusable description of the relation
between customer, service, and resource. In addition, the example
shows the need for a standardised usage description for data ex-
change between phases of a life cycle. This problem was introduced
in Section 1.3 as problem P1a.

The key results of the analysis presented in Section 4.2 are also
published in (Heckmann et al., 2008, 2009; Heckmann and Phippen,
2010).

4.3 requirements on provision quality control

This section analyses the control of provision quality for SOC service
offers hosted on IaaS.

As the analysis of related work in Section 3.2.1 reveals, there are no
continuous approaches for the provision of UC service offers in SOC

architectures hosted on IaaS (cf. Section 2.6) to assure service quality
throughout all OSI layers and converge the quality-related ontologies
of service, experience, and business.

The findings show that the monitoring of service quality responds
to technical thresholds, classified as QoS. Monitoring of service quality
during runtime does not take economic characteristics into account,
as classified in QoBiz. Current work does not distinguish between the
views on service quality from the point of view of the service provider
(QoS) and the service consumer, classified as QoE. For UC service of-
fers, overbooking of resources on purpose depends on the economic
weighting of the committed QoE and the available QoS that can be of-
fered to the competing service requests. Thus, there is no continuous
combined economic and technical control of service quality through
all OSI layers from a consumer to a resource in UC scenarios. This is
one aspect, why control of service quality is introduced in Section 1.3
as problem P2.

4.3 requirements on provision quality control 75

To prepare the identification of an approach to close this gap, ser-
vice quality is analysed from the point of view of a UC service provider
in Section 4.3.1.

One of the most common uses of SOC service offers is the technical
representation of business logic to represent parts of business pro-
cesses. In complex service cascades with redundant service offers, as
introduced in Section 1.3, the estimation of the feasibility of business
processes based on SOC architectures is an open research question,
as the insufficient technical approaches like shown in Section 3.2.1
and by Heckmann et al. (2011, 2012a) illustrate. Therefore, a generic
multi-tier SOC architecture is elaborated in Section 4.3.2 to enable the
identification of an approach to close this gap.

4.3.1 Service Quality and Service Level Agreements in Utility Computing

Tied to the classification of QoS in Section 3.2.1, in this section an anal-
ysis of service quality from the point of view of a UC service provider
is presented. In UC, service quality has an important role. Constitutive
to the definition of UC in Section 2.2, necessity, reliability, usability,
utilisation, scalability, and exclusivity are the main criteria to charac-
terise utilities. All of these criteria directly or indirectly address the
quality of the service provision.

Service Level Agreements

The examination of service quality starts with its agreement. The def-
inition of suitable quality criteria for a service offer is done as part
of an SLA. As additional part of an SLA, the type of monitoring for
these quality criteria is specified. This thesis addresses probabilistic
SLAs (Buyya et al., 2011, p. 174) on the level of technical agreements
about service quality. The level of functional correctness is not exam-
ined. Technical agreements are defined as: all technical measurable re-
quirements that are relevant for the attended service response proper-
ties beside functional correctness. In opposite, service offers are func-
tional correct, when the service processing of service requests results
in the expected behaviour, conform to a given business logic includ-
ing changes in non-volatile business data and corresponding service
request responses.

To illustrate the definition of functional correctness, a short exam-
ple is provided in the following. Let a service method invocation with
consistent method parameters be conform to the specified parameter
value ranges. Such a method invocation must result in an accurate
result set consisting of the expected business data.

76 requirements concerning a generic service life cycle

In this thesis, response time is considered as the only primary SLA

criterion from the UC service consumer’s point of view. Other pos-
sible primary SLA criteria (e.g., continuity or security) are not con-
sidered in this thesis. From the point of view of a UC service con-
sumer, response times must be independent of the overall provider
load. This requirement implies the abdication of directly contracted
resource reservations of any kind. Otherwise, service providers can-
not achieve the targeted dynamic scaling of their underlying resource
architecture and the dynamic optimisation of resource utilisation in
general.

From the point of view of a UC service provider, response time of
service request responses as primary SLA criterion depends on sec-
ondary SLA criteria. In case of UC service offers, these secondary cri-
teria are usage complexity and usage frequency per interval (cf. UUC
and UF in Section 4.2.1). The introduced primary and secondary cri-
teria are subject to individual SLAs between service consumer and
provider.

Response Time Classification

In addition to service quality criteria for service offers, corresponding
classes of value ranges for such criteria must be given for their suc-
cessful technical monitoring. Corresponding actions must be defined
within SLAs during contracting. For the primary criterion of response
time this is done in the following. Aberrations to the contracted max-
imum response time could be classified as follows.

• RTst- — Below contracted minimum

Classifies service response times below the minimum as RTmin

of the determined acceptable response time.

• RTst — Within contracted range

Classifies service response times between RTmin and the maxi-
mum as RTmax of the determined acceptable response time.

• RTst+ — Above contracted maximum

Classifies service response times above RTmax of the determined
acceptable response time.

• RTnp — Unprocessed request

Classifies service requests that are technically and functionally
conform to the processing requirements of a certain service of-
fer, with the service request response not sent back to the ser-
vice consumer (e.g., due to technical errors or request dropping
in cases of resource overload).

4.3 requirements on provision quality control 77

Quantitative and Qualitative Aspects of Service Quality Control

Figure 25: Overview of Quantitative and Qualitative Aspects of Service
Quality Control

The analysis of the management of service quality introduces the
quantitative and qualitative aspects of quality control for UC services.
Beside the previous analysis on the criteria for service quality and the
agreeing on service quality, the management of service quality is of
interest to service providers. The capacity management is the classical
approach to manage service quality in the service-resource relation.
In capacity management, the goal is to dedicate a certain amount of
resources for a specific service offer to achieve a certain QoE.

For UC service offers, the management of service quality is analysed
further. Quality cannot only be managed by capacity provision, but
also through the management of the usage itself. Combining both
approaches offers a more granular management of service quality to
service providers.

Usage management consists of provision management and consumption
management, as shown in Figure 25. While provision management also
addresses the service-resource relation, consumption management is
concerned with the customer-service relation. Provision management
offers a qualitative approach to the management of service quality in
the service-resource relation. Provision management monitors, analy-
ses, and controls the service request routing and resulting utilisation
of processing resources. In opposite, consumption management de-
scribes a quantitative approach to the management of service qual-
ity in the customer-service relation. Consumption management uses
price scales and SLAs as the provider’s instruments to indirectly influ-
ence the usage behaviour of its service customers.

78 requirements concerning a generic service life cycle

Summarising Service Quality

The analysis of service quality and SLAs in UC from the point of view
of a UC service provider reveals the missing standardisation of the us-
age description for the quantitative usage behaviour mapping in the
consumption management. This problem is previously introduced as
P1a in Section 1.3.

The analysis also shows that SLA criteria for UC service offers have
to be limited to the response time of service request responses. To
provide a more granular management of service quality to UC ser-
vice providers, usage management has to be in the focus in UC ser-
vice quality control. These findings allow approaches that focus on
a combined economic and technical control to assure service quality
throughout all OSI layers and converge QoS, QoE, and QoBiz. These are
additional aspects that made control of service quality necessary to
be introduced in Section 1.3 as problem P2.

The results of the analysis presented in Section 4.3.1 are also pub-
lished by Heckmann and Phippen (2010).

4.3.2 Feasibility of Business Processes Operated on SOC Architectures
Hosted on IaaS

From the point of view of business managers, the feasibility of busi-
ness processes is essential for economic success. But not only is the
state of feasibility of interest, but also the workload of processes. Cer-
tain workloads may reach critical technical or organisational thresh-
olds. From the point of view of technical operations, offering such
state information for business processes can become a complex chal-
lenge, especially for business processes based on service-oriented ar-
chitectures. The complexity of this challenge arises from highly meshed
service cascades and redundant alternate service offers, as previously
introduced in Section 1.3.

Multi-Tier SOC Infrastructure Analysis

To enable the development of an approach to estimate the feasibility
of business processes operated on SOC architectures hosted in IaaS, a
generic model for IaaS infrastructures for the hosting of SOC services
is described in the following.

The generic architecture this thesis introduces consists of eight hor-
izontal layers, as shown in Figure 26. As entry layer, business pro-
cesses represent the abstract description of steps to be processed to
produce a business value. The automated steps within such a busi-
ness process are represented by technical workflows/processes in the

4.3 requirements on provision quality control 79

underlying layer. The business functionality within these technical
workflows is provided by the orchestration of the available service
offers on the layer of service instances (e.g., web services). The ser-
vice instances are hosted on the application infrastructure layer (e.g.,
within database systems or application servers). The software com-
ponents of the application infrastructure layer are deployed on the
operating system layer. Thereby, each operating system instance runs
in a virtual machine on the virtualisation layer. The resources allo-
cated on the virtualisation layer are retrieved on the physical systems
layer. On the final layer, the network services connect the systems on
the physical systems layer. The connections are implemented relying
on resources such as routers, switches, or domain name services.

The previously described horizontal multi-tier SOC infrastructure
is accompanied by a vertical layer, with the business process layer
as exception. This vertical layer is the technical monitoring, which
tracks and evaluates technical measuring points on the horizontal
layers (e.g., running processes, log file analysis, network stack avail-
ability, processing load, memory, or storage usage).

The complexity of the management of such infrastructures rises
when additional requirements have to be considered, defined as:

• Handling of complex service cascades with redundant service
offers;

• Integration of internal and external service providers;

• Support for an intermediate logic that changes the invocation
target of a service request at runtime (e.g., to seamlessly switch
between redundant service offers).

The complexity of the introduced generic multi-tier SOC architec-
ture illustrates the last aspects that made control of service quality
necessary to be introduced in Section 1.3 as problem P2. In addition,
the shown multi-tier architecture offers the basis for the identification
of a suitable approach to the estimation of business process feasibility.

The presented generic architecture disclaims technical details to en-
sure service availability for individual layer services like redundant
failover layouts for servers or network components. In this thesis, it is
estimated that these technics are applied in implementations of those
architectures as individually appropriate.

The results of the analysis presented in Section 4.3.2 have been
evolved in cooperation with a business partner and are also published
by Heckmann et al. (2011, 2012a).

80 requirements concerning a generic service life cycle

Figure 26: Generic Multi-Tier SOC Architecture Including Redundant Ser-
vice Offers

4.4 requirements on provision platforms

This section aims at evolving a set of basic functional requirements
on provision platforms from the point of view of a service provider.
These requirements should enable the constitutive development of
a core model for UC-conform provision platforms, as introduced in
Section 1.3 as problem P1c.

To determine the basic functional requirements three sources are
analysed. The main set of requirements is extracted from the collec-
tion of use cases of the OGSA community in Section 4.4.1. This set is
enriched with two minor sources for functional requirements. Section
4.4.2 analyses qualified industry standards as basis for the extraction
of requirements. In Section 4.4.3, this thesis analyses the mediation
conditions specific for Utility Computing service offers.

4.4.1 Functional Requirement Extraction

As introduced in Section 3.1.2, during the specification of the OGSA

the Grid community collected a wide spectrum of scenarios describ-
ing business and scientific use of distributed computing applications,
not restricted to parallel computing workloads. This use case collec-

4.4 requirements on provision platforms 81

tion is analysed for its functional requirements on a core provision
model for UC service offers.

A rough overview of the following results of the analysis, presented
in Section 4.4.1, are also published by Heckmann (2007).

Functional Requirement Constraints

This thesis does not aim to evolve a comprehensive provision model
for UC service offers. Targeted is a core provision model for UC ser-
vice offers to clarify the relation between service consumer and re-
sources and, in addition, to enable decisions about technical frame-
works for UC service provision and, thereby, to enable cost estimations
for service development and operations. The minimum requirements
to evolve such a core provision model derived from the UC definition
in Section 2.2 and the thesis scene setting in Section 2.6 are defined
as:

• Provision of SOC service offers;

• Scalability of service offers;

• Management of provision quality;

• Basic accounting model.

The management of transactions that are overarching service offer is
excluded in this thesis, as it is not estimated as a minimum require-
ment for UC service offers.

Functional Requirements for Commercial Data Centres

The following functional requirements are extracted from the OGSA

use case Commercial Data Center (CDC) (Foster et al., 2004):

• Discovery

To enable the operations of a CDC, at least one reference to this
CDC has to be also published in one or more discovery services.

• Authentication, authorisation, and accounting (AAA)

The CDC authenticates a customer and authorises its job re-
quests. In this process, the CDC also identifies the customer’s
policies including, but not limited to, SLA, security, scheduling,
and brokering policies.

• Advanced reservation

Job requests contain a date that describes the favoured start
time for the job processing. For job requests without such tim-
ing information, the CDC’s reservation service should choose

82 requirements concerning a generic service life cycle

a suitable start time for request processing. Such an advanced
reservation feature is useful in the context of shared parallel
computing systems to optimise resource utilisation over time.

In this thesis, this requirement is excluded, as it does not apply
to sequential workload scenarios.

• Brokering

The brokering service in a CDC identifies suitable resources for
the processing of a job request with a given start time. This
resource selection takes access control and quotas into account.
The identified resource is reserved and its identifier is returned
to the customer.

• Data sharing

A job request contains the information about the required data
access during processing (e.g., database and/or files). Access to
required data should also be considered during resource identi-
fication during brokering.

• Provisioning

A sufficient time period prior to the planned start time of the
job request processing, the CDC initiates the provision of the
application and data to the reserved resources.

• Scheduling

At start time the processing of the job request is initiated by the
CDC.

In this thesis this requirement is excluded, as it does not apply
to sequential workload scenarios.

• Metering and accounting

During the processing of the job, a metering service monitors
the resource usage. This monitoring data is passed on to an
accounting service.

• Fault handling

The fault handling process is designated through fault manage-
ment policies per customer to ensure the job submitter is in-
formed about errors during job processing.

• Policy

Policies should be available to determine specific job properties.
For example, a brokering policy should define the resource us-
age quotas per customer. Error and event policies should be

4.4 requirements on provision platforms 83

available to enable autonomous management including provi-
sioning and failover.

Functional Requirements for Interoperation

The following functional requirements extend the previous use case
and are extracted from the OGSA use case Inter Grid (Foster et al.,
2004):

• Discovery and brokering

It should be possible to discover and broker services across or-
ganisations with various levels of security policies being consid-
ered.

• Metering and accounting

It should be possible to access heterogeneous storage systems
with support for varying system interfaces. Requirements for
accounting include the handling of multiple accounts and/or
accounting systems.

• Monitoring

Monitoring should offer a cross-organisational view on resources
with focus on life cycle management and fault handling. Au-
tomated actions should be supported in reaction to monitored
events. The monitored data should be accessible via Application
Programming Interface (API).

• Provisioning

The provisioning service should be compatible with non-Grid
provisioning systems. One solution could be the specification
of APIs for Grid provisioning service interaction.

In this thesis, this requirement is excluded, as it does not apply
to sequential workload scenarios.

• Resource collision resolution

In mixed Grid and non-Grid environments, resources could be
used by both types of workload at the same time, but this is con-
sidered as undesirable. This should be prevented by a collision
management service.

In this thesis, this requirement is excluded, as it does not apply
to pure sequential workload scenarios.

• Usability

It should be possible to use resources for both types of access,
batch and interactive.

84 requirements concerning a generic service life cycle

• Management

The management and monitoring of resource usage including
the detection of SLA violations should be supported.

• Load-balancing

Load-balancing should take security policies into account.

• Legacy application management

Legacy applications are owned software systems that cannot be
changed, but are too valuable to be replaced, or too complex
to be reimplemented. In the integration of such legacy applica-
tions into the CDC, it has to be considered that the applications
should still be usable in addition to the integration realisation.

• Administration

The administration of a CDC should support automation of
standard maintenance tasks. CDCs should be able to self-organise
and self-describe, managed by low-level configuration details
based on higher-level configurations and management policies,
specified by administrators.

Administration should also support the migration of non-SOA

services to SOA services to be deployable in a CDC.

Software updates for the CDC framework software should not
enforce any service unavailability.

• Programming model

A guideline for software development of CDC applications in-
cluding a guide for the integration of legacy applications.

In this thesis, this requirement is excluded, as it is estimated to
exceed the minimum requirements of UC service provision.

• Program execution

It should be possible to specify the range of tolerated processing
(e.g., priorities for the operating system scheduler to provide
real time processing of applications) and network delays.

• Logging

The logging of CDC events should be detailed enough to per-
form reliable troubleshooting. This could include varying levels
of logging, as required by the administrators.

• Policy

There should be policies available for the specification of secu-
rity and identity properties.

4.4 requirements on provision platforms 85

• Collaboration requirements

Various levels of security should be available to control the ac-
cess to resources or services.

• User interfaces

To submit, monitor, and control the job requests, interfaces should
be available to CDC users and administrators. In addition, for
administrators an interface for the monitoring of the CDC per-
formance should be provided.

Functional Requirements for Resource Resellers

The following functional requirements are extracted from the OGSA

use case Grid Resource Resellers (Foster et al., 2004):

• Discovery and brokering

Resellers operate brokers to distribute the workloads to avail-
able resources. To decide about the distribution, information
about the job preferences and resource policies must be given.
A broker can use metrics like processing performance, network
delays, or resource costs to select specific resources for process-
ing. Resellers should be able to identify the original resource
owner, even when the resource is resold by other resellers. And
end-users should be able to identify resellers.

• Metering and accounting

The resellers should bill end users based on the actual con-
sumed resources during job processing.

• Monitoring

The resource owner should monitor resource usage per individ-
ual end-user to track resource abuse, even when the resource is
sold through multiple resellers.

• Policy

End-users and resource owners will probably have complicated
policies, as well as the resellers might have. Resellers must not
be able to resell resources in a way that it violates the resource
owner’s policies.

• Extended SLA

SLAs should additionally carry cost information and penalties.

86 requirements concerning a generic service life cycle

Functional Requirements for Resource Usage Services

The following functional requirements are extracted from the OGSA

use case Resource Usage Service (RUS) (Foster et al., 2004):

• Discovery and brokering

The RUS should offer discovery mechanisms to locate sources
for resource metrics.

• Monitoring

The monitoring fabric should provide methods to collect usage
metrics.

• Policy

A policy service should manage the configuration and orches-
tration of RUS instances.

• Security

A security service should offer the capability known from com-
mon authentication, authorisation, and accounting (AAA) (Tread-
well, 2005) systems. For some commercial scenarios the RUS
should be able to store account identifiers from an AAA system
along with consumption metrics.

Functional Requirements for IT Infrastructure and Management

The following functional requirements are extracted from the OGSA

use case IT Infrastructure and Management (Von Reich, 2004):

• Authentication

A system should authenticate its users.

• Authorisation

Users should obtain their credentials from the local virtual or-
ganisation (VO) (Treadwell, 2005) or optionally, in order to ac-
cess remote applications, from the remote VO.

• Fault tolerance

Possible sources of error lie the process of queue lookup, errors
in transmission, or automated routing of job requests. These
should be prevented by measures like redundant provision com-
ponents and exception handling.

• Registry

A registry should provide the service to enable the lookup of
the location of available applications including the information
whether this applications run local or remote.

4.4 requirements on provision platforms 87

• Resource specification

The specification of resources should provide an inventory of
applications on a physical host and corresponding records in
the registry.

• Notification/Messaging

The registry should be notifiable about changes in the applica-
tion inventory.

• Resource selection

The requirements for resource matching should be known. In
addition, the demand for software licences to execute applica-
tions should be determined.

• Policy schema

Relevant infrastructure and management properties should be
specified through policies.

• Brokering and arbitration

If multiple licence types would apply to one application, a given
licence scheme should be evaluated together with given policies
to pick a suitable licence.

• Reservation

It should be possible to reserve licences demanded by applica-
tions in advance.

• Logging

Status events should be logged.

• Hosting environment

Hosting environment should be available and initialised.

• Data migration

There should be a service that migrates applications to physical
hosts for execution.

• Monitoring

A service for monitoring should report installation progress, job
status, and resource consumption.

• Metering

A service for metering should record resource usage in terms of
resource occupation and occupation duration. In addition, the
usage of licences should be recorded.

88 requirements concerning a generic service life cycle

• Auditing

Usage and application profiles should be audited on physical
hosts.

• Billing

Users should be billed based on the metered data.

Functional Requirements for ASPs

The following functional requirements are extracted from the OGSA

use case GRID based ASP for Business (Von Reich, 2004) and on the
key results extracted from the GRASP project (cf. Section 3.1.2):

• Discovery

Discovery is one of the core functions of an ASP infrastructure.
Discovery is done by the locator subsystem. Whether ASP users
search for suitable grid services or other ASPs are looking for
grid services, in order to resell those, a locator subsystem is de-
manded to provide search functionality within the provided ser-
vice offers. Beside the obvious option to search for services by
functionality, the business domain of ASP demands the consid-
eration of other search criteria such as price or specific service
properties.

It is proposed to redefine SLAs as a superset of functional, techni-
cal and business requirements, searchable by service users. Such
SLAs should then represent a unique contract between a cus-
tomer and a service provider. Providers publish SLA templates
in the context of the locator subsystem. These SLA templates
could be either be fixed or be adaptable to the customer’s needs.
The locator subsystem should be able to process such SLAs and
return appropriate service endpoints to a user.

• Instantiation

VOs should be built based on hosting environments (HE) (Tread-
well, 2005) containing a gateway host and a pool of physical
hosts. Users of service offers should not be enabled to directly
invoke the service factory, but should be forced to be served by
an instantiator subsystem. The instantiator subsystem should
respond to requests for service instantiation by executing the
request on behalf of the user respecting the given SLA. Other
than the locator subsystem, the instantiator subsystem should
consider the current resource load of the HE. Therefore, the in-
stantiator subsystem interacts with multiple other subsystems

4.4 requirements on provision platforms 89

to gather information about the HE state, like with the monitor-
ing or security subsystem.

• Load-balancing

HEs usually comprise more than one physical host that is able
to execute a grid service conform to a certain SLA. Obviously,
this strongly depends on the current load on the physical host,
the character of the grid service and the requirements resulting
from the related SLA. Therefore, some kind of load-balancing
system is required. Such a load-balancing system should gen-
erate a prioritised list of the physical host, able to process a
certain request conform to its SLA. This list is processed by the
instantiator subsystem to choose a suitable physical host.

• Metering and monitoring

Load-balancing depends on the ability to measure certain sys-
tem metrics. Beside common system metrics, an extensible me-
tering and monitoring system should provide service-related
metrics. Such service-related metrics could be the number of
service invocations or the service performance. Other subsys-
tems like accounting or monitoring could require these metrics.

• SLA management

The use of sophisticated SLAs introduces additional requirements
for SLA management systems. One requirement is that there
should be a common SLA description language available. An-
other requirement is the demand for a corresponding parsers to
process an SLA described in a common SLA description language.
For example, the locator subsystem might do a fuzzy search on
the SLA, while the load-balancing system looks up single met-
rics. As last requirement, an SLA management system should
monitor service instances for SLA violations. In case of SLA vi-
olations, the SLA management system should either inform the
accounting subsystem regarding the consideration of penalties
or decide to destroy the service instance.

• Accounting

Services executed on behalf of a customer should be accounted.
The accounting subsystem should be able to handle scenarios,
with services executed under varying SLAs. Varying SLAs can
cause scenarios, with varying metrics considered for price cal-
culations. In addition, the accounting subsystem should be able
to consider penalties and manage composite services.

90 requirements concerning a generic service life cycle

• Orchestration

Different business models for ASPs should be supported. Beside
simple models, where providers extend their legacy applica-
tions by service offers, a reseller model should be supported,
where providers resell orchestrated services in an OGSA com-
pliant way. Thus, the infrastructure should be able to expose
orchestrated services as new service.

• Security

Security issues - such as authorisation or authentication - should
be considered by an infrastructure approach. This includes the
demand to support multiple security-related roles such as ser-
vice consumer or service provider.

• Deployment

There should be a subsystem to autonomously manage the de-
ployment, update, and removal of service instances on hosts
including their registration at the other subsystems (e.g., the
locator subsystem).

• Notification

The complexity of service cascades and, in addition, of the sub-
system infrastructure itself implicates the demand for a dedi-
cated notification system to exchange state information between
service instances and/or subsystems. Simple request-response
approaches should not be considered in this case.

• Legacy application management

To support ASPs that depend on the integration of the function-
alities of legacy applications, tools and libraries should be pro-
vided to support this integration into service cascades.

Functional Requirements for Monitoring Architectures

The following functional requirements are extracted from the OGSA

use case Grid Monitoring Architecture (Von Reich, 2004):

• Discovery and brokering

There should be mechanisms available that enable service con-
sumers to discover services, including the validation of the con-
sumer’s access rights.

4.4 requirements on provision platforms 91

• Data sharing

To provide access and management of data and corresponding
meta-data, mechanisms like replication, archiving, and caching
should be available.

• Policy

As providers and consumers conclude a contract on the con-
ditions of service usage, the containing information should be
used for - in terms of event and/or error policies - self-management
within the infrastructure and/or failover of the monitoring sys-
tem.

4.4.2 Qualified Industry Standards

Properties Derived From the ITIL Service Delivery Specification

The following raw properties relevant for provision platforms are ex-
tracted from the ITIL v2 IT service management set Service Delivery
(Elsaesser, 2006; APM Group et al., 2011):

• Service level management (SLM)

– Client service relation (CSR);

– Operation level agreement (OLA);

– Service achievement service catalogue;

– Service charter including service level agreements;

– Service quality plan including key performance indicators
(KPI);

– Service level requirement (SLR) including service specifica-
tion sheet (SSS);

– Underpinning contract.

• Availability management

– Availability;

– Reliability;

– Maintainability;

– Serviceability;

– Uptime;

– Downtime;

– Operation time average downtime (ADT);

– Annual failure rate (AFR);

92 requirements concerning a generic service life cycle

– Single point of failure (SPOF);

– Mean time between failures (MTBF);

– Mean time to repair (MTTR).

• Financial management

– Budgeting;

– Charging;

– Accounting.

In this thesis the financial management properties are ex-
cluded, as it is estimated to exceed the minimum require-
ments of UC service provision.

• Capacity management

Capacity management should calculate the requirements for IT

resources, measure the utilisation of the infrastructure, and plan
the necessary infrastructure revisions.

• Continuity management

Continuity management should offer disaster planning consid-
ering common failure reasons, common countermeasures to pre-
vent data loss, and service failure6. The following properties
should be included:

– Cold standby;

– Immediate standby;

– Manual recovery;

– Warm standby.

Properties Derived From the COBIT Framework Specification

The following raw properties relevant for provision platforms are ex-
tracted from the COBIT 4.0 framework (ISACA, 2005).

• Plan and organise

– Define a strategic IT plan;

– Define the information architecture;

– Determine technological direction;

– Define the IT processes, organisation, and relationships;

– Manage the IT investment;

6 See also the ITSCM process within the ITIL specification.

4.4 requirements on provision platforms 93

– Communicate management aims and direction;

– Manage IT human resources;

– Manage quality;

– Assess and manage IT risks;

– Manage projects.

• Acquire and implement

– Identify automated solutions;

– Acquire and maintain application software;

– Acquire and maintain technology infrastructure;

– Enable operation and use;

– Procure IT resources;

– Manage changes;

– Install and accredit solutions and changes.

• Delivery and support

– Define and manage service levels;

– Manage third-party services;

– Manage performance and capacity;

– Ensure continuous service;

– Ensure systems security;

– Identify and allocate costs;

– Educate and train users;

– Manage service desk and incidents;

– Manage the configuration;

– Manage problems;

– Manage data;

– Manage the physical environment;

– Manage operations.

• Monitor and evaluate

– Monitor and evaluate IT performance;

– Monitor and evaluate internal control;

– Ensure regulatory compliance;

– Provide IT governance.

94 requirements concerning a generic service life cycle

4.4.3 Mediation Conditions in Utility Computing

Cost Domains

In this thesis, it is assumed that there may exist providers that need
to distinguish between more than one cost domain. The term cost
domain herein is defined as an abstract group of resources grouped
by the criterion of the provider’s costs that occur for the processing
of a service request. Cost domains therefore represent economical
boundaries.

Cost domains are often reflected in technical boundaries. Such bound-
aries can be implied by the physical location of resource in different
data centres, significantly different hardware performance (e.g., in
scenarios where older and newer hardware are operated simultane-
ously within the same data centre), or differing technologies for the
operation of resources. But cost domains also can be reflected in legal
boundaries like the location of technically comparable data centres in
different countries.

The results of this analysis are also published by Heckmann et al.
(2012b).

Provisioning Factors

The management of service requests at runtime - based on active mea-
sures to control the flow of service requests - aims to gain control over
the resource utilisation by controlling the routing of service requests
to their processing resources. Besides the continuous monitoring of
the utilisation of processing resources, the decision about the route
of requests is the core of provision management (cf. Section 4.3.1).
As a basis to calculate the decision of request routing, technical and
economical criteria of the later request processing have to be consid-
ered. In this thesis, these technical and economical criteria are called
Provisioning Factors. Provisioning Factors aim to represent the quali-
tative aspect of the service-resource relation and are defined in the
following.

Provisioning Factors are introduced as a group of three comple-
ment factors:

• Processing factor

The processing factor aims at calculating the costs for the pro-
cessing of a given service request on provider-owned resources.
As basis for these cost calculations, the fixed costs for service
hosting (e.g., for server acquisition, housing, and administra-
tive personnel) and corresponding dynamic costs (e.g., for cool-
ing and power) are taken into account. Not part of this thesis

4.4 requirements on provision platforms 95

is the identification of the individual combination of these fixed
and dynamic costs. The calculation of the processing factor is
not useful, till the availability of sufficient resources for request
processing is ensured. This calculation must include all costs for
sub-requests invoked by the initial request. This thesis estimates
that a detailed analysis of complex service cascades, performed
in order to find the optimum costs or in order to calculate the
exact resource demand, may fail at runtime. In such cases, this
thesis suggests the calculation of approximations instead.

• Outsourcing factor

There are scenarios conceivable, where it can be an economi-
cal alternative to forward requests to other service providers
for processing. For all layers of a service cascade such outsourc-
ing decisions can be appropriate. For example, conceivable out-
sourcing scenarios may reach from the processing of customer
requests on competitor sites in times of peak loads up to the
dynamic processor picking for back-end services such as the re-
trieval of geological information. The outsourcing factor aims at
calculating these costs for external request processing.

• Neglecting factor

In opposite to the previously introduced factors, the neglecting
factor aims at calculating the costs for an intentional violation
of the SLA agreed upon between customer and service provider.
The worst conceivable violation is the intentional drop of a re-
quest. But also, other aberrations from a corresponding SLA may
might be possible. For all contracted variations of service level
aberrations, the costs must be taken into account. The neglect-
ing factor introduces an additional option, that increases the
flexibility of routing decisions.

All elaborated Provisioning Factors calculate costs. In combination
with the information about a consumer’s contracted price list, the
profit or loss of the possible routing decision can be calculated. The
mentioned costs may vary over time on individually contracted fac-
tors (e.g., time of day or discounts on request amounts). The specified
factors can be interpreted as proposals, from the point of view of this
thesis. In other contexts, it is possible to add or remove criteria as
needed.

The results of this analysis are also published by Heckmann and
Phippen (2010).

96 requirements concerning a generic service life cycle

4.4.4 Summary of the Requirements on Provision Platforms

Section 4.4 introduced a wide set of functional requirements for pro-
vision platforms. In Section 4.4.1, a partly overlapping set of require-
ments extracted from the use cases of the OGSA community has been
extracted. This set includes requirements for commercial data centres,
interoperation, resource resellers, resource usage services, IT infras-
tructure and management, application service providers, and mon-
itoring architectures. Section 4.4.2 enriches this set of requirements
with two also overlapping requirement sources. The properties re-
lating to IT infrastructures defined in ITIL and COBIT are analysed
and interpreted as requirement sources for UC-conform provision
platforms. This requirement collection is enriched by the analysis of
the mediation conditions specific for Utility Computing service offers.
This collection of overlapping requirement sets enables the constitu-
tive development of a core model for UC-conform provision platforms
in Section 5.2 to evolve a solution approach to problem P1c (cf. Section
1.3).

4.5 summarising the requirements

Chapter 4 analyses in detail the settings of the problems stated in
Section 1.3. This analysis reveals certain specific requirements of the
UC business model on a generic life cycle for SOC service offers hosted
on IaaS (cf. Section 2.6).

The analysis addresses the problems P1..3. The settings for problem
P1a, that is concerned with a missing standardised usage description
for data exchange between phases of a life cycle, are detailed in the
Sections 4.2 and 4.3. Section 4.2 examines the relation between cus-
tomer, service, and resource while elaborating the importance of a
standardised usage description throughout the service life cycle. For
the collected analysis results Section 5.3.2 evolves a solution approach
to such a usage description.

The settings of problem P
1b, that is concerned with a comprehen-

sive usage-centred data model, are detailed in Section 4.2. Section
4.2 elaborates the importance of a consistent view on the customer-
service-resource relation. Section 5.4 evolves a solution approach to a
data model resolving this issue.

The settings of problem P1c, that is concerned with a core provi-
sion model for Utility Computing services, are detailed in Section
4.4. Section 4.4 examines the functional requirements for UC-conform
provision platforms, while elaborating the importance of a generic

4.5 summarising the requirements 97

provision model for Utility Computing services. Section 5.2 evolves a
solution approach to such a provision model.

The settings of problem P2, that is concerned with the control of
service quality in the context of SOC service offers hosted on IaaS,
are detailed in Section 4.3. Section 4.3 examines the role of service
level agreements, response times, and the quantitative and qualita-
tive control aspects. In addition, this chapter examines the settings
to evaluate the feasibility of business processes based on SOC service
offers. Section 5.3 evolves corresponding solution approaches for the
usage-centred assurance of service quality.

Summarising the previously introduced utility computing-specific
requirements, the example in Section 4.2.4 reveals the importance of
continuous analysis of the complex estimations about markets and
their possible usage behaviour for UC service offers throughout the
entire life cycle, in order to keep track of changes at the cost side of
the business planning. This finding reflects the problem P3, that is It is known, that the

control of the cost
side of business
planning is
currently also
missing due to the
fact that in practice
there is no detailed
knowledge about the
dependencies of
services among each
other.

concerned with the analysis of complex service cascades. The results
of the analysis in this chapter can be summarised as an additional
indicator - beside the example given in Section 1.3 - for the complex-
ity of UC service cascades. Chapter 6 evolves a simulation model to
enable a corresponding analysis of complex UC service cascades.

5
U S A G E - C E N T R E D P R O V I S I O N A P P R O A C H

The requirements on Utility Computing services are elaborated in
Chapter 4. Based on the previous elaborations, this chapter intro-
duces approaches to the representation of these requirements on UC

service life cycles. Section 5.2 evolves an approach to a technology-
independent core provision model for Utility Computing platforms.
In addition to such a core provision model, Section 5.3 evolves a set
of approaches to enable a concept for usage-centred assurance of ser-
vice quality. A corresponding usage-centred data model is evolved
in Section 5.4. Section 5.5 demonstrates the interaction between the
previously introduced approaches and the life cycle of a UC service
offer.

5.1 research methodology

In Section 2.1.1, the hypothesis is introduced that an improved repre-
sentation of the core relation of Utility Computing within a generic
service life cycle leads to an all in all more cost efficient service provi-
sion. In this chapter, a core provision model and a concept for usage-
centred assurance of service quality are modelled. Chapter 6 adds a
resource and cost simulation model based on these outcomes.

As preparation of the modelling, chapter 4 analyses the require-
ments in the context of this thesis.

Section 5.2 consolidates the requirements on provision platforms
retrieved in Section 4.4 as base for a core provision model. These pri-
mary requirements are to be used afterwards to derive provision com-
ponents as logical functional groups. The core workflows between
these provision components are then to be derived from the primary
requirements in interaction with the functionalities of the introduced
components.

In Section 5.3, a concept for usage-centred assurance of service
quality is elaborated based on the requirements gathered in Section
4.3. Based on the work of Liang et al. (2005, 2006), the level of us-
age is introduced as starting point for the characterisation of usage
in the context of provision quality. The quantitative approach of us-
age pattern is complemented with an approach for a decision tree,
in order to enable economic request routing. These approaches are
continuously evolved into an approach for business service level. The

99

100 usage-centred provision approach

evolved approaches offer the ability to introduce a new approach for
the feasibility rating of service cascades. This approach is evolved
based on the previous work in this section.

Section 5.4 introduces an approach for a usage-centred data model
based on the evolution of the work in Section 5.3 and feedback from
business partners. The core of the model is represented by the pre-
viously introduced business service levels. Also, the model links the
approaches evolved in Section 5.2 and Section 5.3 logically with each
other.

5.2 core provision model

Based on the requirements defined in Section 4.4, Section 5.2.1 consol-
idates the primary requirements providing a single source for further
processing. Resulting, two use cases are derived from the collected
requirements. One, describing the service consumption in provision
platforms, the other, specifying the requirements on service provision
for UC platforms.

The basis for Section 5.2.2 are the previously generated use cases.
Within the section, a minimum set of abstract provision components,
representing the actors of the evolved core provision model, is de-
rived.

In Section 5.2.3, a minimum set of interactions between these provi-
sion components is described. The interactions are grouped into three
workflows that specify the essentially necessary interactions between
the defined provision components. These workflow descriptions com-
plete the core provision model for UC platforms.

The evolved approach to a core provision model offers a generic
provision model for Utility Computing services, as demanded, in or-
der to solve problem P1c, specified in Section 1.3.

5.2.1 Consolidation of Primary Requirements on Provision Platforms

In the following, the requirements introduced in Section 4.4 are con-
solidated into a single source of requirements on UC-conform service
provision.

Service Consumption Use Case

• Discovery

– Req01: Looking up service providers by service types;

– Req02: Selecting a reference to a certain service provider;

5.2 core provision model 101

– Req03: Providing geographical information about the pro-
cessing location (e.g., local data centre, remote data centre,
trusted partner service, or public third-party service);

– Req04: Providing price scales for request processing.

• Brokering and load-balancing

– Req05: Looking up service providers by service instances;

– Req06: Finding the most suitable resources for a service
request, respecting processing costs;

– Req07: Queuing requests when forwarding is currently not
possible;

– Req08: Applying access control and quotas for a selected
resource;

– Req09: Forwarding requests to their selected resources and
authenticate requests at a resource;

– Req10: Preventing SLA violations by dynamically forward-
ing requests to SLA-conform resources;

– Req11: Preventively invoking additional service instances
to increase the pool for SLA-conform request processing;

– Req12: Destroying underutilised service instances.

• Orchestration

– Req13: Exposing orchestrated services as new services;

– Req14: Providing accounting information for orchestrated
services;

– Req15: Providing SLA information (e.g., monitoring infor-
mation) for orchestrated services;

• Authentication and authorisation

– Req16: Authenticating service consumers submitting ser-
vice requests;

– Req17: Authorising submitted service requests;

– Req18: Selecting the corresponding policies (e.g., event, er-
ror, security, and brokering policies) associated with a spe-
cific service customer;

– Req19: Enabling the storage of authentication information
to access third-party services.

102 usage-centred provision approach

• Monitoring, metering, and accounting

– Req20: Considering monetary penalties for SLA violations;

– Req21: Monitoring resource usage on processing systems
for runtime analysis:

* Overall system processor, memory, storage, and net-
work usage;

* Processing duration, processor, memory, storage, and
network usage per service request;

* Deployed service types and running instances;

– Req22: Monitoring the life cycle of service instances per ser-
vice type:

* Overall feasibility per service type;

* Individual service instance deployment, state, and de-
struction;

– Req23: Calculating price based on resource usage per re-
quest;

– Req24: Storing gathered information for offline analysis;

– Req25: Attaching billing information to request responses;

– Req26: Providing an interface for access to the gathered in-
formation.

• Fault handling and logging

– Req27: Providing failure notification to service consumers;

– Req28: Handling instructions given by the error policies;

– Req29: Logging error information for troubleshooting.

• Policies

– Req30: Brokering-specific policy properties defining resource
usage quotas per service customer (including the SLA prop-
erties to specify the tolerances in transport and processing
delays and enable the control of the service level through-
out all parties in a service cascade);

– Req31: Error-specific policy properties defining actions for
the autonomous management including provisioning and
failover, whereby the following types of errors should be
supported:

* Request failed unexpected (request was well formed,
but its processing failed);

5.2 core provision model 103

* Request format unsupported (request was not well formed);

* SLA violation (request was executed, but at least one
SLA property has been violated during processing);

* Resource unavailable (request was executed, but ran
out of some resource, e.g. memory or storage);

* Consumer unreachable (request was successfully exe-
cuted, but response is undeliverable);

* Request timeout (provider-side queuing time expired,
without processing resource being available);

– Req32: Event-specific policy properties defining actions for
autonomous management including provisioning and load-
balancing like resource overused and resource underutilised;

– Req33: Security-specific policy properties defining location,
authentication, and authorisation for customers and their
service requests, as listed below:

* Authentication: Consumer known and trusted;

* Authorisation: Request invoked by an authenticated
consumer and consumer allowed to use a specific ser-
vice offer;

* Location: Request processing restricted to classified re-
sources (e.g., provider owned resources, trusted part-
ner resources, or public resources).

The model does not aim to support service request scheduling (e.g.,
submitting jobs to the model with timing information attached).

Submitted service requests are processed as soon as possible with
respect to their policies.

The model does not aim to support mixed legacy application us-
age with the possibility to use the same resources in SOA and legacy
fashion.

The model does not aim to support licence management for third-
party services or embedded legacy applications.

Service Provision Use Case

• Data access

Req34: Providing access to all necessary user data for deployed
service instances, in order to enable processing of service re-
quests.

104 usage-centred provision approach

• Provisioning

– Req35: Deploying of at least one service instance prior to
actual demand through incoming service requests, with
the deployment including resource selection, instantiation
based on the given files, and insurance of user data access;

– Req36: Announcing of a service instance in the service di-
rectory after deployment;

– Req37: Deployed service instances being removable at run-
time;

– Req38: Service implementations supporting different de-
ployment states like online (ready for incoming requests),
offline (service is ready to be removed form a resource), and
standby (service is ready for transfer to the online state).

• Embedded legacy applications

Req39: Enabling the ability to include non-model conform appli-
cation functionalities, in order to support mixed environments
with existing legacy applications.

• Synchronous and asynchronous usage

Req40: Service offers being available for synchronous or asyn-
chronous usage by service consumers.

• Administration

– Req41: Interfaces enabling full automation of all actions de-
manded for administration, in order to connect autonomous
management systems enabling features like self-organisation;

– Req42: Giving interfaces, libraries, or instructions to enable
the migration of service offers from non-SOA environments
to SOA service offers;

– Req43: Assuring that upgrades of software providing the
environment does not lead to service outages.

• Policies

Req44: Deployment-specific policy properties defining the auto-
mated resource selection for service deployment, like the num-
ber of online or standby instances per service level and/or geo-
graphical location, including corresponding rules to determine
these numbers, and actions to ensure the adequate deployment.

5.2 core provision model 105

5.2.2 Derivation of Provision Components

This section examines the collected requirements in Section 5.2.1
for their qualification for a core provision model. As selection crite-
ria, the requirement has to enable the service provision conform to
the definition of UC service offers in SOC architectures hosted on IaaS,
defined in Section 2.6. To balance the acceptance of a requirement
as part of the minimal set, the necessity of the requirement is also
checked in comparison to the workflows evolved in Section 5.2.3. As
there is no comparable predefined minimal set, this thesis introduces
the selection given in the following as proposal for such a minimal
set of requirements on UC-conform services.

After their selection, the requirements are grouped by functionality
within an abstract network of interacting components. This structures
the requirement collection without binding the provision components
to a specific technical environment.

The derived provision components presented in the following are
also published by Heckmann (2007).

Service Instance

• Functionalities

– Instance of a service type that can handle multiple service
requests simultaneously;

– Exists within the context of a certain service host;

– Applies SLA quotas (implements Req08);

– Supports the states online, standby, and offline (implements
Req38).

• Properties

– Processor usage of instance (implements Req21);

– Memory usage of instance (implements Req21);

– Storage usage of instance (implements Req21);

– Network usage of instance (implements Req21);

– Events like errors or state changes (implements Req22).

Service Host

• Functionalities

Hosts can only host one service instance of a certain service
type at a time.

106 usage-centred provision approach

• Properties

– Processor usage of host (implements Req21);

– Memory usage of host (implements Req21);

– Storage usage of host (implements Req21);

– Network usage of host (implements Req21);

– Service instance states (implements Req21);

– Service types deployed (implements Req21);

– Events like errors or state changes (implements Req22).

Service Type

Service types offer the functionality to define a certain class of ser-
vice with distinctive business functionality and a standardised public
interface.

Service Consumer

• Functionalities

Invoking service instances by sending service requests.

• Properties

Offering authentication information for service requests.

Service Request

• Functionalities

– Invoking a service instance;

– Including an associated synchronous or asynchronous ser-
vice request response (implements Req40).

• Properties

– Service request bill1 (implements Req25);

– Service request events like error messages or event mes-
sages (implements Req27);

– Service request response time2 (implements Req21, 30);

1 Service request responses should contain the request-specific costs that are going to
be billed by the service provider.

2 Time period between the first occurrence of an incoming service request within the
provision environment of a service provider and the outgoing service request re-
sponse finally leaving the provision environment

5.2 core provision model 107

– Service request execution time3;

– Service request queuing time4.

Service Registry

• Functionalities

– Authenticating service consumers (implements Req16, 33);

– Authorising service requests (implements Req08, 09, 17).

• Properties

– Service types available (implements Req01, 36);

– Service type price scales (implements Req04);

– Service type broker (implements Req02);

– Third-party service type usage information like authenti-
cation data (implements Req05, 19);

– Service type deployment files (implements Req35);

– Service type load-balancers like local, trusted-partner, pub-
lic third-party (implements Req03);

– Service load-balancer costs information.

Service Broker

The functionalities provided by service brokers can be summarised
as economical load-balancing and accounting management, defined
as:

• Forwarding service requests to the economically most suitable
service load-balancer or third-party service broker (implements
Req06, 09, 10, 18, 30; implements Provisioning Factors, cf. Section 4.4.3),
respecting all given policies;

• Generating service request bill per request, including third-party
service utilisation costs and SLA penalties (implements Req14, 20, 23).

Service Load-Balancer

• Functionalities

– Representing a single cost domain (implements cost domains,
cf. Section 4.4.3);

3 Time period for the service request processing at a service instance including gener-
ation of a service request response

4 Cumulated time periods in which a service request is being queued on its way
through the provision environment towards and back from a service instance

108 usage-centred provision approach

– Queueing service requests, if necessary (implements Req07);

– Forwarding service requests to the technically most suit-
able service instances, respecting all given policies (imple-
ments Req08, 10);

– Managing (e.g., deploying, activating, deactivating, or re-
moving) the service instances on the controlled service hosts
on demand (implements Req11, 12, 28, 31, 32, 37).

• Properties

– Service instances running;

– Service instances deployed;

– Service hosts managed.

Service Monitoring

Service monitoring offers the functionality to monitor policy-related
metrics per service request. The following properties are expected.

• All usage metrics from other model components - historical
and real time metrics - retrievable from the service monitoring
archive (implements Req24, 26, 29);

• Usage metrics of service types, accumulated as index of the
overall resource usage per service type for all registered service
types, including third-party offers (implements Req15).

Network Connector

Network connectors offer the functionality of an undirected connec-
tion between two components of the model. As property, the network
connector offers the usage metrics of the network layer.

Service Network

A service network offers the functionality of grouping a finite set of
connected model components.

Brokering Policy

The properties provided in the brokering policy are defined per ser-
vice consumer:

• Information to access the user data (implements Req34);

• Maximum latency for service request responses (implements
Req30);

• Maximum number of concurrent service requests.

5.2 core provision model 109

Error Policy

The properties provided in the error policy are defined per service
consumer (implementing Req31):

• Unexpected failure actions;

• Request format failure actions;

• SLA violation actions;

• Resource unavailability action;

• Consumer unreachable action;

• Request queuing timeout action.

Event Policy

The properties provided in the error policy are defined per service
type (and implement Req32). The properties specify the two types of
actions to take when resources are underutilised or overloaded.

Security Policy

The properties provided in the error policy are defined per service
consumer (and implement Req33). There is one property that speci-
fies the authorised service consumers. And there is another property
that specifies the allowed processing and storage locations for service
requests and corresponding user data.

Storage Network

User data is stored near its creation or processing location. User data
is accessible directly through its storage location.

Excluded Requirements

As they do not represent parts of the minimal set of requirements nec-
essary to provide UC-conform services, the below listed requirements
are not considered for the core provision model:

• Embedded legacy applications (Req39);

• Administration-related requirements (Req41-43);

• Deployment policies (Req44).

110 usage-centred provision approach

5.2.3 Derivation of Core Workflows Between Provision Components

This section describes a minimal set of interactions between the
provision components introduced in Section 5.2.2, that enables the
provision of UC services in a core model. The interactions are anal-
ysed corresponding to and grouped by the three workflows that this
thesis estimates as essential for the process of service provision. In
this context, the minimal set of interactions is defined as these inter-
actions which enable the provision of service offers conform to the
primary requirements defined in Section 5.2.1.

The derived provision interactions presented in the following are
also published by Heckmann (2007).

1_SSC — Simple Service Consumption Workflow

The simple service consumption workflow describes the minimal set
of interactions between the provision components, that processes an
atomic service request with a single resource domain given.

• Initial broker lookup

Name: s-01

Request flow: service consumer→ service registry

Request data: service consumer authentication and service type

Response data: service broker and service price scales

• Request transmission

Name: s-02

Request flow: service consumer → service broker → service
load-balancer→ service instance

Request data: service consumer authentication and service re-
quest

Response data: service request state, service request response,
and service request bill

• Request authentication

Name: s-03

Invoked by: s-02

Request flow: service broker→ service registry

Request data: service consumer authentication and service re-
quest

Response data: service authorisation and brokering policy

5.2 core provision model 111

• Load information retrieval

Name: s-04

Invoked by: s-02

Request flow: service load-balancer→ service monitoring→service
host

Response data: host usage of processor, memory, storage, and net-
work, deployed service types, and service instance modes

• Load information delivery

Name: s-05

Invoked by: s-02

Request flow: service instance→ service monitoring

Request data: instance usage of processor, memory, storage, and
network and instance events

• Service bill archiving

Name: s-T

Invoked by: s-02

Request flow: service broker→ service monitoring

Request data: usage information of third-party services and ser-
vice bill

Workflow step s-01 is optional.
Workflow step s-T terminates each evolved workflow (1_SSC, 2_CoSC,

and 3_CaSC) as closing step.
Workflow 1_SSC is illustrated in Figure 27.

Figure 27: Illustration of Workflow 1_SSC

112 usage-centred provision approach

2_CoSC — Complex Service Consumption Workflow

The complex service consumption workflow describes the minimal set
of interactions between the provision components, that processes an
atomic service request with multiple resource domains given.

The 2_CoSC expands the 1_SSC by one workflow step - named s-06

- invoked by the second 1_SSC step, s-02. The step determines the util-
isation of each given resource group represented by a load-balancer
and is called determine domain utilisation. Its request flow starts at the
service broker and ends at a service load-balancer. The data given
with the request is the service type of the service request to be pro-
cessed. The data expected as response is the service type utilisation
per load-balancer.

Workflow 1_SSC is illustrated in Figure 28.

Figure 28: Illustration of Workflow 2_CoSC

3_CaSC — Cascaded Service Consumption Workflow

The cascaded service consumption workflow describes the minimal set
of interactions between the provision components, that processes a
cascaded service request with multiple resource domains given.

5.2 core provision model 113

The 3_CaSC expands the 2_CoSC by two workflow steps invoking
sub-requests to external service offers. The scene setting assumes that
performing sub-requests to external service offers is more complex
compared to the invocation of requests addressing internal service of-
fers. Further, it is assumed that being able to handle the more complex
external sub-requests also enables to handle internal sub-requests.

• External sub-request transmission

Named: s-07

Invoked by: s-02

Request flow: service instance (internal) → service broker (in-
ternal)→ service broker (external)→ service load-balancer (ex-
ternal)→ service instance (external)

Request data: service consumer authentication (added by inter-
nal service broker) and service sub-request (invoked by internal
service instance)

Response data: service request state, service request response,
and service request bill (removed by internal service broker)

• External load information retrieval

Named: s-08

Invoked by: s-07

Request flow: service broker (internal) → service broker (exter-
nal)→ service monitoring (external)

Request data: service type

Response data: utilisation metric5

Workflow 1_SSC is illustrated in Figure 29.

5 The provision of a utilisation metric shall enable the internal service broker to deter-
mine the available service capacity to be included in its forwarding decision. There
might by scenarios given where service providers may not intend to provide such
metrics. Therefore, the provision of a utilisation metric is optional.

114 usage-centred provision approach

Figure 29: Illustration of Workflow 3_CaSC

Indirect Sub-Request Invocation

The 3_CaSC workflow implies that service instances do not invoke
sub-requests directly. The indirect invocation of sub-requests medi-
ated by the service broker prevents the model from losing control
over changes in service providers or authentication credentials. Pay-
per-use billing of service offers based on service cascades would be
more error-prone and rise the complexity of service implementation,
if billing information from sub-requests was managed by service in-
stances themselves. In addition, the complexity of the control of load-
balancing between redundant service offers would rise, if service in-
stances invoked sub-requests directly. The model offers the service
broker as component to handle the overhead of billing management
and abstraction level for sub-request service providers.

5.3 usage-centred assurance of service quality

Based on the levels of usage evolved by Liang (cf. Section 5.3.1), this
section describes approaches to specify usage behaviour (cf. Section

5.3 usage-centred assurance of service quality 115

5.3.2), decide on request routing (cf. Section 5.3.3), determine the fea-
sibility of service cascades (cf. Section 5.3.5), and specify service levels
for UC services (cf. Section 5.3.4). These approaches are consolidated
in Section 5.3.6.

5.3.1 Levels of Usage

Figure 30: Liang’s Levels of Usage

As an entry to the discussion on usage in the service context, the
work of Liang et al. (2005, 2006) is introduced. Liang et al. evolve
three points of view on service usage for the research on data mining
in the field of web services.

The three levels of usage are specified as follows.

• User request level

The user request level is concerned with the outer view on com-
posite services. The level describes how composite services are
used by consumers. On this level there is no awareness of the im-
plementation of the service itself. Therefore, the potential com-
plexity of a corresponding service cascade providing the service
is hidden.

• Template level

The template level of service usage deals with the inner view
on composite services. The level describes the correlation of ser-
vices representing an underlying service cascade of a service
offer. Liang et al. characterise service cascades as flows of ser-
vice dependencies which lead to a consumer-satisfying output.

• Instance level

The instance level is concerned with the dependencies of ser-
vices regarding their runtime environment. Such constraints re-
strict service implementation, deployment, and migration.

The three introduced levels of usage and their relation to service con-
sumers and providers are depicted in Figure 30.

116 usage-centred provision approach

The previously introduced results of the analysis of the work of
Liang et al. is also published by Heckmann (2009); Heckmann and
Phippen (2010).

5.3.2 Usage Patterns

In Section 4.2.1, the demand for an approach to characterise the
customer’s usage behaviour and enable its transfer between acting
parties within the service life cycle is described. In addition, in Section
4.3.1 it is illustrated that the secondary SLA criteria in UC also depend
on a characterisation of customer’s usage behaviour.

Based on Liang’s user request and template levels, this section de-
scribes an approach to specify usage behaviour in the context of this
thesis. This approach is called usage pattern.

Figure 31: Usage Behaviour Description by Usage Pattern

A single usage pattern defines a quantitative approach to usage be-
haviour mapping (cf. Section 4.3.1) between an unlimited number of
service consumers and a particular service offer by a unique service
provider. In usage patterns, consumers are grouped corresponding
to their usage behaviour. The behaviour groups are represented by
one or more request classes. The corresponding relation includes the
request frequency as attribute with equal distribution assumed. Each

5.3 usage-centred assurance of service quality 117

request class describes a certain usage behaviour regarding one func-
tion of a service offer.

Behaviour is represented by an abstract function parameters class.
Each class represents a characteristic combination of function param-
eter value ranges, that imply a deterministic function call behaviour.
This approach assumes that for most functions the resource demand
for processing a function call can be deducted from given parameter
values. It is known that there are function implementations where
this assumption fails. As an example for a

non-deterministic
function, the
calculation of the
total amount of a
bank account is
given. Given the
account number as a
function parameter,
it is not possible to
estimate the resource
demand of this
calculation by
evaluating the
account number.

The request class may relate to any number of sub-request classes.
For this recursive relation a request frequency attribute is provided
with equal distribution assumed. This feature enables the specifica-
tion of service cascades. It is known that the use of this feature breaks
the paradigm of service abstraction (Erl, 2007). Therefore, the use of
the recursive relation is optional.

The introduced relations - which altogether instantiate a usage pat-
tern - are shown in Figure 31 using an entity relationship diagram
(Chen, 1976).

The previously introduced approach to specify usage behaviour is
also published by Heckmann (2009); Heckmann and Phippen (2010).

The evolved approach of the usage patterns offers a standardised
usage description for data exchange between phases of a service life
cycle as demanded to solve problem P1a specified in Section 1.3.

5.3.3 Decision Tree

In Section 5.2.2, the service broker is introduced as essential compo-
nent in UC provision platforms. This component enables the routing
of UC service requests based on economic criteria in addition to re-
source load criteria. To enable such an economic request routing (cf.
Section 4.3.1), a decision tree6 7 is proposed as quantitative approach.

The direct management of service requests at runtime aims to gain
control over the processing resource utilisation by managing the for-
warding of service requests. This thesis assumes that, next to the con-
tinuous monitoring of the utilisation of processing resources, the deci-
sion on the route of a request is the core of UC provision management.
To decide on a request’s route, measurable criteria that represent tech-
nical and economical aspects of the request processing must be eval-
uated. These criteria are collected and sorted in a decision tree. This

6 In previous work of Heckmann this approach has been called Provisioning Factors.
7 Despite the use of the term in data mining, machine learning, operations research,

or statistics, this thesis reuses the term in its own context.

118 usage-centred provision approach

decision tree is a qualitative approach to enable provision manage-
ment in the service-resource relation of UC (cf. Section 4.3.1).

Figure 32: Decision Tree for Utility Computing Service Request Routing

The decision options in the tree can be grouped into three cate-
gories, as follows.

• Processing

The decision option processing aims at calculating the costs of
the processing of a specific service request on provider-owned
resources. These costs are derived from fixed costs for service
hosting (e.g., for server acquisition, housing, and administrative
personnel) and the dynamic costs (e.g., for cooling and power
consumption). Not part of this thesis is the identification of the
individual combination of these fixed and dynamic costs. Pre-
vious to the decision calculation, the availability of sufficient re-
sources to process the specific service request must be ensured.
If resources are available, the costs for request processing can
be estimated. This calculation also includes costs for all sub-
requests initiated by the specific request.

This thesis assumes that the detailed analysis of large service
cascades in order to find the optimum costs at runtime may
fails in complex provisioning scenarios. This also applies to the
calculation of the exact resource demands. In case of complex
provisioning scenarios, this thesis suggests calculating approxi-
mations instead.

5.3 usage-centred assurance of service quality 119

• Outsourcing

Another decision option for the processing of service requests
is the outsourcing. In this case, the request is not processed on
provider-owned resources. Scenarios are conceivable, where it
is an economical alternative to forward requests to other ser-
vice providers for processing. Request outsourcing can be ap-
propriate for all layers of a service cascade. Such scenarios can
reach from the processing of customer requests on competitor
sites in times of peak loads up to dynamic processor picking for
back-end services (e.g., retrieval of geographical information).
Regardless of the scenario, the costs for the external request
processing are estimated.

• Neglecting

In opposite to the previous groups, the decision option of ne-
glecting a service request aims to calculate the costs for an in-
tentional violation of the SLA. The intensity of the violation can
range from exceeding the maximum agreed request response
time up to simply dropping the incoming service request. To
decide about the best option, the costs for all contracted varia-
tions of service level aberrations must be taken into account.

In all introduced decision groups, costs are calculated. In combina-
tion with the estimation of the price for a specific service request, the
profit or loss of a routing decision can be estimated. All addressed
costs may also vary over time corresponding to individually con-
tracted factors (e.g., time of day or discounts on request amounts).
The evolved groups are proposals fitting in the context of this thesis,
but can be adapted by adding or removing options in other contexts,
as needed.

The introduced relations - which altogether instantiate a usage pat-
tern - are shown in Figure 32 using an entity relationship diagram
(Chen, 1976).

The previously introduced approach to a decision tree is also pub-
lished by Heckmann (2009); Heckmann and Phippen (2010).

5.3.4 Business Service Level Agreements

In Section 4.3.2, the analysis of the view points of business man-
agers and technical operations introduces the demand for a simpli-
fication of the agreement about feasibility of service offers between
business and IT. Common approaches for service level agreements

120 usage-centred provision approach

focus on technical metrics resulting from the contracting of resource
reservations throughout the OSI layers (cf. Section 3.2.2). The complex-
ity of highly meshed service cascades including redundant alternate
service offers makes these approaches inefficient.

The idea of BSLAs introduces a new level of service agreements,
which loosens the coupling between business and IT.

Figure 33: Simple Business Service Level Agreement

The core of BSLAs is the turn-away from the description of the
committed QoS from the point of view of service providers. BSLAs
specify the expected QoE from the point of view of a service con-
sumer. To achieve this goal, BSLAs start with the description of the
expected usage behaviour of a service consumer. For example, a cus-
tomer consists of a group of ten service consumers. Approximately,
each consumer sends one service request per second. In this simpli-
fied example, also the request complexity is approximately constant
throughout the consumer group. These quantitative service quality
metrics can be represented using the previously introduced usage
pattern (cf. Section 5.3.2). The remaining relevant mandatory techni-
cal service level metric is the maximum latency of service request
responses, as introduced in Section 4.3.1. The combination of usage
pattern and specification of the maximum tolerated latency of ser-

5.3 usage-centred assurance of service quality 121

vice request responses represent the core of the BSLA approach. This
core can optionally be enhanced by the declaration of maintenance
windows, maximum downtimes, fines, prices, or other service level
attributes.

The approach of BSLA changes the focus of the agreement on ser-
vice levels from technical thresholds to the usage behaviour descrip-
tion as relevant metric. Thus, BSLAs introduce a new abstraction layer
by reducing the demand for technical metrics in service level agree-
ments to the specification of the tolerable response time limit. Figure
33 illustrates a simple characteristic of BSLAs in a Unified Modeling
Language (UML) diagram (OMG, 2011). The diagram details the BSLA

relation between a consumer group and a service. This relation con-
sists of price and cost attributes combined with a usage pattern class
and a service level class. The usage pattern class offers attributes for
the requested service type and method, called request_target, and an
abstract indicator for the request complexity regrading its process-
ing. The service level class offers a latency attribute. To specify the
timely distribution of the service usage, the usage pattern relates to
the scheduling class. This class offers attributes to detail the request
sequences in terms of request frequency, delay between requests, and
sequence duration.

The previously introduced approach to Business Service Level Agree-
ments is also published by Heckmann et al. (2011, 2012a).

5.3.5 Feasibility Rating for Service Cascades

Based on the analysis of multi-tier SOC infrastructures operating com-
mon business processes in Section 4.3.2, this section evolves an ap-
proach to rate the feasibility of such infrastructures hosted on IaaS.

Rating feasibility starts with an agreement. The previously evolved
approach to agree upon service levels based on the description of
the expected usage of service offers - BSLA - is suitable to agree on
the feasibility of service offers. Using BSLAs to contract on service
offers introduces contracted usage as metric to analyse feasibility. As
opposite metric to the contracted usage, the monitored usage reflects
the IT infrastructure’s current request load and resource utilisation
per group of consumers addressed by the given BSLA. Comparing the
monitored with the contracted usage indicates the workload of the
contemplated consumer group, assuming the technical availability
of all demanded infrastructure components. Therefore, the resulting
metric can be used to lead back the workload of business processes
that are dependent on the contracted service offer.

122 usage-centred provision approach

Contracted usage consists of the specification of the planned re-
quest load that is recorded in the BSLA and a corresponding estima-
tion of the expected resource demand that is related to a specified
service request type and complexity. This resource demand has to be
estimated by the service provider. Approaches to ease the estimation
of the resource demand of service requests are not examined in this
thesis.

Monitored usage depends on the monitoring of resource utilisation,
which can be done using common monitoring systems, and the mon-
itoring of the current request load per consumer group. This thesis
proposes the previously introduced service broker (cf. Section 5.2.2)
as component to implement the monitoring of request load.

The service broker consolidates the information, in order to cal-
culate the contracted and monitored usage metrics and the result-
ing workload metric. Based on this information combined with the
technical availability of the demanded components, the service bro-
ker can estimate the feasibility of service offers for certain consumer
groups. This approach eliminates the demand to track down the ex-
act resource consumption for each dedicated service request, in order
to estimate the feasibility of service cascades.

To enable the estimation of technical availability of the demanded
components, the relevant components have to be identified and their
technical monitoring information has to be consolidated. To reflect
the functional dependencies between components in an IT infrastruc-
ture, a topology graph is introduced. Topology graphs consist of the
infrastructure components retrieved from a Configuration Manage-
ment Database (CMDB)8.If a CMDB is not

available, other
sources - like plain
Extensible Markup

Language (XML)
files (Bray et al.,

2012) - can be used
to represent the IT

infrastructure. For
example, a prototype

implementation to
evaluate the

introduced approach
is based on a simple
CMDB mapped in a

plain XML file (cf.
Heckmann et al.
(2011, 2012a)).

Redundant service offers are mapped as service lines within a topol-
ogy graph. Service lines are logical groups of infrastructure compo-
nents that together provide a service offer. Service offers are repre-
sented by service cascades on the service instance layer in Figure 34.

In IT infrastructures, component categories are logical groups of com-
ponents with identical functionalities, such as application servers pro-
viding the function of hosting service instances for example. Compo-
nent categories enable the consolidation of resource utilisation across
service lines, as illustrated in Figure 34.

To estimate the resource utilisation within a topology graph, the
nodes within the graph are enriched by technical monitoring infor-
mation. The enriched graph is introduced as availability graph. The
granularity of the added monitoring information can vary. The levels
of variation are evolved in the following.

8 A CMDB is a repository of all IT infrastructure components referred to in the context
of ITIL.

5.3 usage-centred assurance of service quality 123

• State-based availability

The state-based availability of a graph node is derived from the
interpretation of state-related technical monitoring data. The in-
formation about the state of a represented infrastructure compo-
nent could - for example - be retrieved by analysing the ICMP
ping9 history stored in a technical monitoring system. The in-
terpretation of state-based data is limited to two simple states:
available or non-available. State-based availability is technically
simpler to be imposed than the subsequent variations, but is
less significant for the deduction of the feasibility of a compo-
nent.

• Load-based availability

Load-based availability of a graph node is derived from the
comparison between its current resource utilisation and its max-
imum resource capacity. The resource utilisation metric is calcu-
lated based on a customisable combination of load-related tech-
nical monitoring data (e.g., for server hardware the combination
of processor load, memory capacity, and storage space metrics
are proposed in this thesis). The interpretation of the result-
ing utilisation metric enables the provision of proportional re-
sult values reflecting the current availability of a specific infras-
tructure component (e.g., 20 % resource utilisation of a server).
Load-based availability is technically more complex to be im-
posed than the state-based variant, but enables more significant
deduction of the feasibility of a component.

• Mixed-mode availability

In mixed-mode graphs the availability of a node can be de-
termined by either the state-based or the load-based variant.
Mixed-mode graphs offer a customisable compromise of admin-
istration effort and feasibility deduction precision by combining
both previous variants.

A service broker estimates a service cascade as feasible, when all state-
based nodes of at least one service line are available in the availability
graph and when the resource utilisation of all load-based component
categories offer sufficient reserves to process the estimated usage. Esti-
mated usage is introduced as a representation for the expected usage
in a given time frame, which results from the difference between the
monitored usage and contracted usage. In availability graphs that are

9 Ping provides the ability to monitor the technical network interface of a remote
system. Ping is specified in the Internet Control Message Protocol (ICMP) (Postel,
1981).

124 usage-centred provision approach

exclusively state-based, only the request load is taken into account
when calculating the estimated usage. In other respects, the resource
utilisation is also incorporated.

Figure 34: Feasibility Rating for Service Cascades in Generic Multi-Tier SOC
Architectures Including Redundant Service Offers

In summary, this thesis proposes the integration of a new abstrac-
tion layer for advanced request routing into multi-tier infrastructures,
as shown in Figure 34. The service broker enables the consolidation
of different kinds of metrics. Based on the consolidated information,
the feasibility of a service cascade can be estimated. This approach
releases the customers from the necessity to estimate metrics outside
their subject areas, like the memory consumption during service us-
age. On the other hand, the approach introduces potential for service
providers to develop approaches for an efficient use of their resources,
while maintaining contracted service levels.

The previously introduced approach to feasibility rating for ser-
vice cascades and dependent business processes is also published by
Heckmann et al. (2011, 2012a).

5.3 usage-centred assurance of service quality 125

5.3.6 Concept for Usage-Centred Assurance of Service Quality

Figure 35: Coverage of Liang’s Levels of Usage

Summarising Sections 5.2 and 5.3, the concept for usage-centred as-
surance of service quality proposed in this thesis consists of five el-
ements. Beginning from Liang’s levels of usage presented in Section
5.3.1, the user request level and the template level of service usage are
addressed by the approach of BSLA (cf. Section 5.3.4), including usage
pattern (cf. Section 5.3.2), and the evolved decision tree approach (cf.
Section 5.3.3). BSLAs are building the basis for the agreement and con-
trol of service quality in UC environments (cf. Section 5.3.5). Usage
patterns are the core of BSLA. Together they provide the ability to map
usage behaviour for consumption management in UC, as demanded
in Section 4.3.1. In addition, the decision tree enables economic re-
quest routing as basis of the provision management.

The component model (cf. Section 5.2.2) and the corresponding
workflow model (cf. Section 5.2.3) address the instance level of ser-
vice usage. The combined models describe the minimum set of prop-
erties a platform has to offer for services, in order to enable core UC

features (cf. Section 5.2.1).
All these approaches combined, the agreement and control of ser-

vice quality is enabled, as demanded in Section 4.3. The mapping of
the previously summarised findings to the levels of usage of Liang is
illustrated in Figure 35.

The evolved concept for usage-centred assurance of service qual-
ity offers control of service level agreements, response times, and the
quantitative and qualitative control aspects in the context of SOC ser-
vice offers hosted on IaaS, including the feasibility rating of service
cascades, as demanded to solve problem P2 specified in Section 1.3.

126 usage-centred provision approach

5.4 usage-centred data model

This section evolves a usage-centred data model as basis for the
documentation and analysis of the customer-service-resource rela-
tion. The data model enables the data exchange between phases of
the life cycle and a technical implementation of the previously in-
troduced core provision model for UC services. Thus, the introduced
data model acts as an anchor for the provision workflows between the
components of the core provision model. The data model enables the
technical or economical optimisations of resource usage at runtime.

To evolve the data model, this section transforms the findings in
the concept for usage-centred assurance of service quality (cf. Section
5.3) in the context of the core provision model (cf. Section 5.2) into
data elements and corresponding interrelations in Section 5.4.1.

Section 5.4.2 introduces a concept for the integration of the data
model into the core provision model.

5.4.1 Data Model Specification

The relationships between a certain service provider and its customers
are modelled with a data structure using a UML diagram. Such a data
structure is subsequently used as the basis for optimisations and must
be modified only when the relationships between the service provider
and its customers change.

Customers can have one or more contracts with a service provider.
A contract covers one or more consumer groups (e.g., branches or de-
partments) within the customer organisation. Each consumer group
relates to one or more usage patterns, which can be reused for the de-
scription of the behaviour of other consumer groups. A usage pattern
consists of the attributes service request target and complexity and is
associated to one or more schedules, in order to time the request fre-
quency. Beside the request frequency, a schedule includes attributes
for the delay prior to a request sequence and for the duration of the
sequence. Each usage pattern is associated with one service and two
service levels. This association includes the pricing information (per
unit) for standard request processing and for cases of overrun pro-
cessing. Also, the association between usage pattern and service con-
tains an attribute for the contract penalty (per unit). Thereby, the first
service level in the association relates to the standard pricing, penalty
costs, and contracted usage pattern. The second service level specifies
the commitment for service requests over and above the contracted

5.4 usage-centred data model 127

usage pattern. The second service level relates to the pricing for over-
run scenarios, while penalties are excluded in this case.

Services act as connector between the resource demands expressed
by usage patterns and one or more resource groups. Also, resource
groups may host an unlimited number of services. In addition, a ser-
vice is associated to a deployment set, a backup specification, and
service levels. Deployment sets contain the necessary files and con-
figuration properties to deploy service instances. The additional as-
sociation between one or more service levels enables the modelling
of services at differing service levels. Service levels serve as abstract
categorisation, in order to differentiate varying level of service qual-
ity to be expected when using a certain service offer. To enable this,
a service level includes an attribute to specify the maximum toler-
ated latency for service request responses. In addition, service levels
are associated - beside the previously introduced relations - to one
or more geographical location, an availability class, and one or more
backup specifications.

Resources are organised in groups. The primary grouping criterion
for resources is technical (e.g., the virtualisation software used). As
second criterion, the geographical location (e.g., the hosting data cen-
tre) is used. Resource groups include an attribute to specify the costs
of the resource usage (per unit). Linked to a resource group are one or
more technical interfaces for its administration and monitoring (e.g.,
virtualisation management APIs). Additionally, each resource group
is associated with an availability class. Availability classification en-
ables an abstract categorisation of resources corresponding to their
estimated level of technical availability.

The previously described relations are elaborated in the usage-centred
data model in Figure 36.

The evolved data model includes the previously introduced ap-
proach of BSLA, defined in Section 5.3.4.

The previously introduced approach to a usage-centred data model
is also published by Heckmann et al. (2012b).

The evolved approach to a comprehensive usage-centred data model
offers a consistent view on the customer-service-resource relation, as
demanded, in order to solve problem P

1b, specified in Section 1.3.

5.4.2 Core Provision Model Integration

The data model is stored in the service registry component of the pre-
viously introduced component model (cf. Section 5.2.2). For service
providers the information extractable from the data model enables
the economical optimisations of resource usage. This optimisation can

128 usage-centred provision approach

Figure 36: Usage-Centred Data Model

be done at time of business planning based on estimated data or at
runtime based on monitored data. In case of runtime optimisation,
the data model has to be evaluated by the service broker. The service
broker is previously introduced in Section 5.2.2 as a component to
decide about the economical routing of service requests. This rout-
ing decision comprehends incoming and outgoing requests from the
point of view of a service provider. The evolved data model only ad-
dresses the relations between stakeholders, in order to handle incom-
ing service requests. To enable the economical runtime optimisation
of incoming service requests, the usage-centred data model is inte-
grated into the service broker together with the decision tree evolved
in Section 5.3.3. Enabled by the decision tree and the information ex-
tractable from the data model, the matching between a customer’s
service request and a suitable resource is done in the following six
steps.

Preconditions are a given service request and at least two resource
groups.

5.4 usage-centred data model 129

1. Service type, service consumer and the service level correspond-
ing to the service request are determined.

Postcondition 1: identifiers for service type, service consumer,
and service level are known.

Precondition 2: service request and service type are known.

2. Resource demand for the service request is estimated.

Postcondition 2: service request’s resource demand is known.

Precondition 3: service request’s resource demand, service type,
and service level are known.

3. Pools of resource groups are selected by available resources and
matching service level.

Postcondition 3: two pools of resource groups are known, where
each resource group offers enough resources for request pro-
cessing and one pool complies with the demanded service level
and the other does not.

Precondition 4: service request’s resource demand, service type,
and service consumer are known.

4. The estimated revenue per pooled resource group for request
processing is calculated.

Postcondition 4: per given resource group the estimated rev-
enue is known.

Precondition 5: service request’s resource demand, service type,
service consumer, and service level are known.

5. Estimated costs for service level violation (latency exception
and request failure) are calculated.

Postcondition 5: estimated costs for latency exception and re-
quest failure are known.

Precondition 6: two pools of resource groups with sufficient pro-
cessing resources distinguished by service level compliance, es-
timated revenue per pooled resource group and estimated costs
for latency exception and request failure are known.

6. The most efficient opportunity out of the following actions is
selected:

• Request is processed by a service level conforming resource
group;

• Request is processed by a non-conforming resource group;

130 usage-centred provision approach

• Request is not processed.

Postcondition 6: action for further request processing determined.

5.5 demonstration of the life cycle interaction

Chapter 5 evolves approaches to enable the mapping of requirements
of the UC business model on a generic life cycle for SOC service offers
hosted on IaaS (cf. Section 2.6), detailed in Chapter 4.

The contributions offer approaches for solutions to the problems
P1..2. The approach of a standardised usage description is introduced
in Section 5.3.2 as a solution for problem P1a, that is concerned with
a missing standardised usage description for data exchange between
phases of a life cycle. The usage pattern approach is based on the
analysis in Section 4.2, which examines the relation between customer,
service, and resource.

Chapter 5.4 evolves an approach to a comprehensive usage-centred
data model as a solution for problem P

1b, that is concerned with a
consistent view on the customer-service-resource relation. The usage-
centred data model is also based on the analysis in Section 4.2.

For problem P1c, that is concerned with a core provision model for
Utility Computing services, this thesis proposes a generic provision
model for Utility Computing services, evolved in Section 5.2. The pro-
vision model approach is based on the analysis in Section 4.4, which
examines the functional requirements on UC-conform provision plat-
forms.

The approaches for the usage-centred assurance of service quality
are introduced in Section 5.3 as a combined solution for problem
P2. The evolved approaches are based on the analysis in Section 4.3,
which examines the role of service level agreements, response times,
and the quantitative and qualitative control aspects in the context of
SOC service offers hosted on IaaS. The approaches combine into one
approach to feasibility rating of service cascades consisting of SOC

service offers in Section 5.3.5.
This section demonstrates the interaction of the evolved approaches

with a generic life cycle, as introduced in Section 2.6. To enable such
examinations, the delivery framework is composed out of the intro-
duced approaches in Section 5.5.1. Sections 5.5.2, 5.5.3, and 5.5.4 ex-
amine the gathered approaches from the point of view of the life cycle
phases business planning, development, and operations.

5.5 demonstration of the life cycle interaction 131

5.5.1 Delivery Framework Composition

Figure 37: Illustration of the Delivery Framework as Composition of the
Contributions on the Component and Data Level

Figure 1 on page 4 introduces the contributions of this chapter from
the point of view of the service life cycle. While this illustration en-
ables the understanding of how these findings relate to the phases of
a service life cycle, a component and data level illustration supports
the visibility of the interrelation of the evolved approaches. This il-
lustration of the delivery framework from the point of view of the
component and data level is shown in Figure 37 as composition of
the contributions of this chapter.

The core of the interrelation between the evolved approaches in
this thesis constitutes the BSLA approach. BSLAs provide an approach
to specify the QoE as the service consumers expectation of usage expe-
rience related to a certain usage behaviour. To enable the description
of usage behaviour, BSLAs apply the approach of usage pattern. In Fig-
ure 37, the BSLA is represented by an element group which consists
of the service consumer components introduced in the core provision
model and which relates to a usage pattern, an associated schedule,

132 usage-centred provision approach

and the service broker representing the service relation. The represen-
tation of the BSLA is completed by the service level element related to
the service broker through its embedment into the service registry as
part of the service policies.

The service consumer group relates to the contract and customer
elements of the delivery framework, as described in the data model.

The service broker grants the opportunity for economical load-
balancing, in order to enable the control of QoBiz. To support runtime
decisions on the economical routing of service requests, the service
broker implements the decision tree. The information pool to enable
economical decisions is stored in the service registry within the data
model and corresponding service policies.

QoS is controlled on the level of the service load-balancers. Based on
the data collected in the service monitoring, the service load-balancer
can route service requests optimised by technical criteria to a suit-
able resource within the resource group it controls. Service hosts ag-
gregate resources like processing capacity or memory. Each service
host shares the availability class, geographical location, and technical
interface for resource management with its resource group. Service
instances are hosted on service hosts. For the instantiated service
types, the service registry provides corresponding deployment sets
and backup specifications.

The illustration of the delivery framework simplifies the actual re-
lations between the involved approaches. The delivery framework il-
lustration misses a detailed representation of the workflows evolved
in the workflow model. Not included into the delivery framework
illustration are the following components of the component model:
service network, service request, network connector, and storage net-
work. Despite of the simplifications of the illustration, the evolved de-
livery framework comprehends the full feature set of all introduced
approaches.

5.5.2 Business Planning

Business managers address the economical optimisation of planned
or revised service offers. Therefore, the focus of business planning
lies on the customer as data model element. Also in the primary fo-
cus lies the contract as a data model element. The service consumer
group from the component model completes the primary focus by
introducing its usage pattern and corresponding schedule.

5.5 demonstration of the life cycle interaction 133

Figure 38: Field of Interests of Business Planning on the Component and
Data Level in the Delivery Framework

Beside the primary focus of business managers, business planning
also relies on information about the costs of resource provision and
the technical boundaries of business model implementation. There-
fore, the secondary focus of business planning goes up to the service
host component of the component model. It also includes the service
registry component, especially because service level and backup spec-
ification are relevant data model elements for customer trends.

Business planning demands the continuous analysis of concurrent
market scenarios for a certain service offer, respecting its cost struc-
ture, as formulated as part of problem P3. As business planning fo-
cuses on most of the elements of the evolved delivery framework, a
simulation model - as evolved in Chapter 6 - is representing the de-
livery framework.

5.5.3 Development

IT architects are assigned to keep the balance between the cost es-
timations from the business planning, regarding both, costs of imple-
mentation and costs of future operations. On the one hand, the focus

134 usage-centred provision approach

of development lies on the usage pattern, the corresponding sched-
ule, and service levels as data model elements. On the other hand,
the primary focus lies on the resource consumption induced by the
service instances in the service host components of the component
model.

Figure 39: Field of Interests of Development on the Component and Data
Level in the Delivery Framework

Beside the primary focus of IT architects, development also relies
on the abilities of a provision platform to control service quality and
support the orchestration of service offers into service cascades re-
garding pay-per-use support. Therefore, the secondary focus of IT ar-
chitects reaches up to the service broker, service load-balancer, and
service registry components of the component model. Also, develop-
ment contributes to the deployment set. The IT architecture is affected
by backup specifications and the technical interfaces of the resource
management.

Development demands the continuous analysis of resource usage
and performance limitations of the service implementation, as for-
mulated as part of problem P3. As deployment focuses on most of
the elements of the evolved delivery framework, a simulation model
- evolved in Chapter 6 - is representing the delivery framework.

5.5 demonstration of the life cycle interaction 135

5.5.4 Operations

Operations managers are concerned with the continuous quality of
the provisioned service offers. Therefore, the focus of operations lies
on the service monitoring, service broker, and service load-balancer
from the component model. The primary focus also includes the ser-
vice consumer from the component model, the usage pattern, and the
schedule as data model elements, in order to enable the comparison
of contracted versus monitored usage.

Beside the primary focus of operations managers, operations also
relies on information stored in the service registry from the compo-
nent model. Access to the service level, the backup specification, and
the deployment set as data model elements is demanded to enable au-
tomated decisions of model components. This information demand
also includes the availability class, location, and technical interface as
data model elements related to the resource pools consisting of ser-
vice hosts from the component model. Also important for the control
of continuous service quality is the information about the distribution
of service instances among the service hosts (e.g., to decide about au-
tomated deployment for load-balancing).

136 usage-centred provision approach

Figure 40: Field of Interests of Operations on the Component and Data Level
in the Delivery Framework

Operations demands the continuous analysis of resource usage and
performance limitations of the service cascades, as formulated as part
of problem P3. As operations focuses on most of the elements of the
evolved delivery framework, a simulation model - evolved in Chapter
6 - is representing the delivery framework.

6
S I M U L AT I O N M O D E L F R A M E W O R K

This chapter describes the transfer from the delivery framework, in-
troduced in Chapter 5, into a simulation model framework. The evolved
simulation model framework offers an approach to solve problem P3,
which is concerned with the demand for an approach to analyse UC’s
complex service cascades (cf. Section 1.3, 4.5). The presented simu-
lation model framework enables the analysis of concurrent market
scenarios, resource usage, and performance limitations of the service
cascades. Within the limits of this thesis introduced in Section 2.6, the
framework implementation enables the analysis of SOC service cas-
cades. This analysis is restricted to multi-tier IT architectures, as intro-
duced in Section 4.3.2. The chosen IT architecture significantly effects
the overhead, induced by the management communication between
the components of the delivery framework. In addition, differing IT

architectures imply different approaches for the implementation of
simulation model frameworks. These constraints require the restric-
tion of the type of analysed IT architecture. Due to their distribution
in the hosting of SOC service cascades, multi-tier IT architectures have
been chosen.

Section 6.1 briefly introduces the principles of model building and
simulation focused on discrete-event models. Related work in the
field of combined resource and costs simulation of UC service cas-
cades in SOC architectures hosted on IaaS are analysed in Section 6.2.
The evolved delivery framework is mapped into a simulation model
in Section 6.3. Section 6.4 highlights the major implementation de-
tails of the simulation model framework, while Section 6.5 discusses
its capabilities and restrictions.

6.1 background of model building and simulation

6.1.1 Simulation

Representing the dynamic behaviour of a system by another system is
the goal of the simulation process. What if? questions are the most typ-
ical problem statements simulation models are used to answer. Origin
for the process of simulation is a real world system. Its behaviour is
measured and analysed in terms of the systems interaction with its
environment. Based on these findings, a simulation model is built, in

137

138 simulation model framework

order to represent the major characteristics of the original system. In
case of simulation models, the major characteristics are those which
relate to the analysed system’s behaviour.

The results of a simulation run, as the product of the simulation
process, are approximations of the corresponding behaviour results
of the real world system under identical environmental conditions.
Such a set of environmental conditions, as input data for a simulation
run, together with the desired output data define an experiment.

Modelling begins after the experiment is defined. Depending on
the nature of the real world system to be represented, different types
of simulation models can be chosen. The most common diversifi-
cation property for systems is their dynamic-change behaviour of
the system variables. Here it is distinguished between continuous-
variable models and discrete-variable models.

Continuous-variable models are composed of mathematical expres-
sions for the modelling of the contentious changes of their system
variables.

Discrete-variable models - commonly known as discrete-event mod-
els - describe the change of system variables in discrete steps, neglect-
ing optional transients between the states. In discrete-event models,
queueing of messages between the entities of a model is a character-
istic aspect.

“Classical queueing theory relationships can be used to
represent only a limited range of model complexity and
variability. To transcend this range, a simulation model
involving numeric and symbolic variable representation
and manipulation is employed.”1 (Ralston et al., 2003, p.
1204)

Simulation models are implemented as computer programs, in order
to enable the representation of complex dynamic processes. For this
purpose, specific high level programming languages for the imple-
mentation of simulation models exist.

Simulation models and their implementation must be validated, in
order to ensure the reliability of the simulation results. As simula-
tion is an approximate process to analyse the validity of a result, the
relative accuracy for the gathered output data has to be determined.
The analysis of the relative accuracy therefore requires an understood
criterion of validity.

This summary of simulation refers to the work of Roth (1987);
Banks (1998); Ralston et al. (2003).

1 Queueing theory deals with the description and analysis of connected queues as
limited message stores for the analysis of performance measures of the modelled
system. (Cooper, 1981)

6.2 related simulation model frameworks 139

6.1.2 Building Discrete-Event Models

The evolved delivery framework represents a system of interacting
entities, where few of the variables change at discrete and mostly ran-
dom points of time. The result data of framework simulation runs
should be analysed in terms of resource usage, request and queue
timing, and historical data. The previous described properties indi-
cate the delivery framework representation as discrete-event model.

Discrete-event models consist of a set of basic elements. These ele-
ments are users, resources, queues, and demands. Users consume re-
sources. Resources represent entities that are offered as consumables.
Users and resources interact based on events. Queues hold, option-
ally order, and forward events. Demands are scheduled events that
wait for the processing conform to the model description.

Software is used to implement discrete-event models. Often, this is
done using a high level programming language in conjunction with a
simulation framework. In common, simulation frameworks consist of
a simulation executive, a clock, random number generators, a result
collection, and an application programming interface to enable the
interaction between the simulation model implementation and the
framework.

A simulation executive controls the time advance during the simu-
lation runs. The executive coordinates the events between the simula-
tion model entities. The central clock is used to track the time. Ran-
dom number generators enable the simulation of stochastic behaviour.
The result collection stores model-specific metrics for analysis.

Discrete-event models are built without relying on a specific for-
mal method or description. Depending on the author in literature,
the recommendations vary from the ad hoc mixture of numeric and
symbolic notation, the flowcharting, or the conclusion that the model
is the source code of the simulation software itself.

This summary of discrete-event model building refers to the work
of Ball (2001); Ralston et al. (2003); Banks et al. (2009, p. 1204).

6.2 related simulation model frameworks

This section introduces related work in the field of combined re-
source and costs simulation of UC service cascades in SOC architec-
tures hosted on IaaS. Other approaches for cloud computing simula-
tion are introduced, and it is demonstrated why these approaches
are not sufficient in the context of this thesis. The framework also
includes an approach for a cloud broker, which enables the negotia-

140 simulation model framework

Figure 41: Buyya’s Cloud Simulation Model Framework Class Design Dia-
gram (Calheiros et al., 2011a)

tion on services or resources of other service providers based on QoS

parameters.

Buyya’s CloudSim

CloudSim (Buyya et al., 2009; Wickremasinghe et al., 2010; Calheiros
et al., 2011a; Garg and Buyya, 2011) is a simulation model frame-
work for cloud computing platforms. It offers an approach to model
the behaviour of physical resources spread among data centres. Sup-
ported is the modelling of network, processing, memory, and storage
resources. CloudSim supports the modelling of a virtualisation layer
for physical resources. Based on the specified resources, cascading
cloud services can be modelled. The framework offers a monitoring
interface to model individual behaviour like power consumption. The
classes of the simulation model framework are illustrated in Figure
41, in order to provide an overview of the core feature set.

Buyya’s CloudSim - in comparison to the approach of this thesis
- offers a more detailed resource abstraction. CloudSim enables the
modelling of a virtualisation layer and the modelling of the power
consumption of server hardware. The basis of CloudSim is Buyya’s
InterCloud model for cloud computing, introduced in Section 3.1. Re-
sulting, the CloudSim inherits its discussed limitations. Compared
to the simulation model (cf. Section 6.3) of this thesis, the CloudSim
model misses a service broker which supports economical load-balancing
(cf. Section 5.2.2) and the approach of BSLA (cf. Section 5.3.4).

6.2 related simulation model frameworks 141

Ostermann’s GroudSim

GroudSim (Ostermann et al., 2011b,a) is a simulation model frame-
work for Grid and cloud platforms. SimEngine represents the core
of the framework. It takes care of the time advance and holds the
future event list. The framework offers different types of GroundEn-
tities (e.g., CloudSite or GridSite). Workloads for resources can be
modelled using GroudJobs. Costs for resource consumption can be
modelled either on a charge per processing time unit or in fixed time
intervals independent from the actual processing amount. To enable
the evaluation of simulation results, tracing can be modelled as either
entity state or event-based tracing. To support the use of probabil-
ity distributions for simulated workloads and the failure behaviour
of resources, GroudSim offers a range of predefined distributions
(e.g., exponential or logarithmic). For each GroundEntity, its failure
behaviour can be modelled. In addition, GroudSim can simulate back-
ground load on resources based on correspondingly modelled load
descriptions.

The primary aim of GroudSim is the improvement of runtime per-
formance of simulation runs. It explicitly competes with the previ-
ously introduced CloudSim framework in terms of runtime perfor-
mance. It is not based on a superior cloud computing model. There-
fore, compared to CloudSim or the simulation model framework in-
troduced in this thesis, GroudSim offers very basic building blocks to
model UC service cascades in SOC architectures hosted on IaaS.

Nunez’s iCanCloud

iCanCloud (Castane et al., 2012; Nunez et al., 2012, 2011a,b) is a simu-
lation model framework for Grid and cloud platforms with a focus on
scientific Grid applications. Figure 42 presents an overview of the ar-
chitecture of iCanCloud. The cloud hypervisor can be modelled with
a variable list of queues for waiting and finished jobs. The hypervi-
sor comprises a list of users, job scheduling, brokering policies, and
cost policies. The VM map enables the modelling of sets of virtual ma-
chines, in order to model multiple cloud applications. Each modelled
VM consists of a network system, a CPU system, a memory system, a
list of application instances, and an API.

One of the goals of iCanCloud - as of GroudSim - is the improve-
ment of the runtime performance for the calculation of simulation
runs representing the behaviour of very large cloud platforms. In al-
most the same manner as GroudSim, iCanCloud explicitly competes
with CloudSim. As a result of this competition, iCanCloud aims at

142 simulation model framework

Figure 42: Basic Schema of the Nunez’s iCanCloud Architecture (Nunez
et al., 2012)

exceeding CloudSim in terms of Graphical User Interface (GUI) and
runtime performance. Compared to the simulation model (cf. Section
6.3) of this thesis, the framework offers just very basic building blocks,
in order to model UC service cascades in SOC architectures hosted on
IaaS, as trade-off.

Kliazovich’s GreenCloud

GreenCloud (Kliazovich et al., 2010b,a) is a simulation model frame-
work for cloud platforms. The framework enables the modelling of
cloud platforms, in order to support the estimation of their energy
consumption. GreenCloud uses a network-centric modelling approach
and is built based on a network simulation model framework. There-
fore, the simulation model framework offers detailed properties to
configure and analyse the network behaviour of simulation models.

Figure 43 presents an overview of the architecture of GreenCloud.
The framework supports the modelling of three-tier network archi-
tectures for data centres. Cloud users can be modelled as workload
generators based on workload trace files. The generated traffic enters
into the modelled data centre. The centre consists of task schedulers, a
three-tier network architecture, task completion agents, and a server
pool. The data centre entity can be modelled including data centre
characteristics. The first network layer represents the core network of
the data centre. Depending on the setup, the switches of the core net-
work can be modelled as 10 gigabit or 100 gigabit ethernet switches.
Each switching layer can be modelled with a certain energy model.

6.3 simulation model elaboration 143

Figure 43: Kliazovich’s GreenCloud Architecture (Kliazovich et al., 2010b)

The second network layer represents the aggregation network. The
access network of the data centre is represented by the third network
layer. This layer connects to the servers within the pool. Each com-
puting server consists of a server energy model, a scheduler, server
characteristics, and a task completion sink.

GreenCloud does not offer the abilities necessary to map UC ser-
vice cascades in SOC architectures hosted on IaaS, as it has not been
designed for this purpose. The offered building blocks are not suf-
ficient to map the delivery framework properties (cf. Section 5.5.1)
into a simulation model, beside the basic modelling of the relation
between consumer, service, and resource.

6.3 simulation model elaboration

The introduced component model (cf. Section 5.2.2) is completely
mapped to the simulation model. Service networks (external service
providers) are mapped directly to the simulation model. Service con-
sumers are mapped as consumer groups referring to the data model.
Service requests are initiated by consumer groups. The service mon-
itoring, service broker, and service registry are mapped directly to
the simulation model. The service types and service policies (bro-
kering, error, event, and security) are consolidated as single service
type policy per service. Sites represent groups of resources (e.g., often

144 simulation model framework

grouped by their geographical location). One service load-balancer, a
storage network, and a group of service hosts are mapped as a site
to the simulation model. Each service host is modelled, in order to
contain a set of service instances able to act as service consumer, cor-
responding to the specification of the component model. Each simula-
tion model component is modelled, in order to be enabled to connect
to another component by using a network connector.

Consumer groups use the service broker through workflow step
s-02, in order to initiate service requests. Workflow steps s-04 and s-
05 are modelled, in order to store and retrieve load information for
the service broker and the service load-balancers. The overall load
state of a site is determined through step s-06. Other service networks
are used by the internal service broker through workflow step s-07.
The information of step s-T is modelled, in order to be stored in the
service request response.

Steps s-01, s-03, and s-8 are omitted due to the experimental setup.

The decision tree is modelled as part of the service broker of the
simulation model. The decision tree enables the service broker to take
economical aspects for its routing decision into account. In opposite
to this behaviour, the service load-balancer forwards the incoming re-
quests exclusively by technical metrics. To simplify the modelling of
the experimental setup, the economical load-balancing is modelled as
an prioritised queue. As priority criterion for the queueing, service re-
quests are modelled with a priority metric to indicate their affiliation
to a specific economical class. The economical classification of service
requests is done manually during the configuration of the simulation
runs.

Service requests consolidate information from usage pattern, ser-
vice level, contract, and schedule classes from the data model. The
class service is represented by a service type policy. The association
parameters price_standard, price_overrun, and costs_penalty are substi-
tuted by a simpler modelling of resource pricing due to the experi-
mental setup. A service type policy specifies the costs per unit of re-
source usage per site. In addition, a percentaged margin can be added
to these costs. Alternatively, a fixed price per request can be specified.
This pricing implementation also represents the relevant contracting
information from the data model. The location of resource groups is

6.3 simulation model elaboration 145

represented as part of a service type policy. The resource group of the
data model is modelled as service host in the simulation model.

Omitted are the classes customer, technical interface, availability class,
deployment set, and backup specification. The associated relations of
these classes are omitted, too. The functionalities represented by these
classes are only relevant for the actual implementation and operation
of provision platforms.

An overview of the components and associated data of the intro-
duced simulation model is presented in Figure 44.

Figure 44: Mapping of the Delivery Framework Into the Simulation Model

The evolved delivery framework is modelled, in order to represent
IT service provision in a multi-tier architecture. This architecture is
depicted in Figure 45. The elements service request and service type
policy of the previously introduced simulation model are not illus-
trated in the multi-tier architecture. It is not possible to assign these
elements to a specific architectural layer.

The service broker layer, given in the reference architecture and
presented in Section 4.3.2, is extended by the service registry. The
layer is renamed to service providers, in order to reflect this addition.
The application infrastructure and the virtual infrastructure layers
are obsolete in the simulation model. Their prior functionalities are

146 simulation model framework

merged into the service instances layer of the evolved model. In ad-
dition to the reference architecture, the simulation model assumes,
that service instances are hosted in VMs which include the function-
alities previously provided by the application infrastructure and the
virtual infrastructure layers. The operating system layer is merged
into the service hosts on the physical systems layer. The network ser-
vices layer is dispensed in the simulation model. The layer services
(e.g., routers, switches, or domain name services) are not considered
in the simulation model. The only considered feature of the network
services layer of the generic architecture is the network bandwidth of
the connections between the entities. The network bandwidth is mod-
elled in the network connections of the simulation model. Introduced
as new layers in the multi-tier architecture of the simulation model
are the storage networks and the service processors layer. The stor-
age networks layer hosts the storage network entity of the simulation
model. The service processors layer hosts the link to the external ser-
vice networks and the internal service load-balancers. The construct
of service lines, introduced in Section 5.3.5, is represented by the site
entity in the simulation model.

The key model is also published by Heckmann et al. (2009).

Figure 45: Multi-Tier Architecture View on the Simulation Model

6.4 implementation of the simulation model 147

6.4 implementation of the simulation model

6.4.1 OMNeT++ Simulation Library & Framework

OMNeT++ (Varga, 2001; Varga and Hornig, 2008) serves as basis for
the implementation of the evolved simulation model, presented in
the previous chapter. OMNeT++ offers a combined simulation library
and framework that is extensible, modular, and component-based.
The entire framework is implemented in the programming language
C++ JTC1/SC22/WG21 (2012). This brings forth C++ as preferred
programming language for simulation models implemented using
OMNeT++. The simulation library and framework can be used to im-
plement network simulation models like wired and wireless commu-
nication networks, on-chip networks, queueing networks, and more.
There are many domain-specific model frameworks that enable the
extension of OMNeT++, in order to provide further - often more
detailed - functionality (e.g., sensor networks, wireless ad-hoc net-
works, or Internet protocols). One of the major benefits of OMNeT++
is its graphical runtime environment. It enables fast debugging and
clear understanding of simulation models through visual model ex-
ploration.

Simulation models build using OMNeT++ consist of three main
parts. The central building block for simulation models in OMNeT++
is the model structure defined in the NED language. Using the NED
language, the model components and their interrelations are defined.
Relating components can communicate by exchanging messages through
channels. The conditions for the message flow can be determined
per channel. Two types of components can be defined. Simple mod-
ules represent active components, which contain own logic specifying
their behaviour. The logic of each simple module is implemented in
C++ code, based on the OMNeT++ simulation kernel and class library.
Simple modules cannot host nested sub-modules. Compound mod-
ules are used to group simple modules or other compound modules.
Compound modules are passive components, as it is not possible to
embed logic directly. At the end of a modelling process, OMNeT++
simulation models are represented in a hierarchy of interrelated mod-
ules called network.

As previously introduced, each simple module is implemented in
C++ code. These individually implemented logic components repre-
sent another main part of the OMNeT++ framework. Each individual
C++ component inherits from the basic component class provided
by the simulation library and registers itself at the simulation kernel.
From this point on, the component can send and receive messages

148 simulation model framework

over the specified channels and access the available kernel and library
features of OMNeT++.

The last building block for simulation models in OMNeT++ is the
simulation run configuration. Beside the initialisation of the compo-
nent parameters, the configuration comprehends time-limits for sim-
ulation runs, the definition of iterations, constraint expressions, differ-
ing seeds, or the initialisation of different random number generators.
In one simulation run configuration, multiple simulation runs can be
specified with differing parameters.

While the configuration for simulation runs can easily be changed
editing the corresponding text files, changes to the model structure
or the C++ components require the simulator2 to be recompiled.

6.4.2 Model Structure in NED Language

The network module (root element) of the model structure (compo-
nent hierarchy) for the simulation model framework of this thesis con-
sists of a set of consumer groups and one or more service provider
modules. While the service providers and their interrelations are spec-
ified directly in the model structure, the number and behaviour of
consumer groups can be configured through the simulation run con-
figuration. This enables the simple variation of service consumer be-
haviour (usage patterns) for varying simulation runs, without the
need to recompile the simulator before each simulation run. Listing
1 introduces the corresponding NED code that is using two service
providers as example setup.

Listing 1: Example of a Network Module Definition in NED Code

//Definition of the root module

module UCNet

parameters:

consumerGroups: numeric const;

submodules:

consumerGroup: SrvConsumer[consumerGroups];

provider1: UCSrvProv;

provider2: UCSrvProv;

connections:

for i=0..sizeof(consumerGroup)-1 do

consumerGroup[i].srvRequest --> InternetLastmile -->

provider1.srvRequest++;

consumerGroup[i].srvResponse <-- InternetLastmile <--

provider1.srvResponse++;

endfor;

2 In this thesis, the compiled executable program of a simulation model is called sim-
ulator.

6.4 implementation of the simulation model 149

//Use this loopback to access services provided within

your own network

provider1.ucServicesOut++ --> provider1.srvRequest++;

provider1.ucServicesIn++ <-- provider1.srvResponse++;

//Service provider interconnections

provider1.ucServicesOut++ --> provider2.srvRequest++;

provider2.ucServicesIn++ <-- provider1.srvResponse++;

provider2.ucServicesOut++ --> provider1.srvRequest++;

provider1.ucServicesIn++ <-- provider2.srvResponse++;

endmodule

//Registration of the root module

network ucnet : UCNet

endnetwork �
Consumer groups are represented by the simple module SrvCon-

sumer. The module basically consists of one incoming and one out-
going gate to interconnect the module with service providers in the
network. Listing 2 shows the corresponding NED code.

Listing 2: Example of a Service Consumer Group Definition in NED Code

//Definition of the service consumer module

simple SrvConsumer

parameters:

queuePriority: numeric const,

srvRequestConfig: xml;

gates:

in: srvResponse;

out: srvRequest;

endsimple �
In opposite, service providers are represented by the compound

module UCSrvProv. This module is composed of a service broker,
service registry, service monitoring, and a set of sites. The service
provider module offers four sets of gates for interconnections. There
are two sets of gates for incoming messages and two sets for outgo-
ing messages. At any one time, one pair of incoming and outgoing
gate sets is used to interconnect one communication direction. Con-
sumer groups only demand one communication direction, from the
consumer to the provider. Service providers among each other are
connected in both directions. In this way, providers are able to share
services between each other. Listing 3 introduces the corresponding
NED code.

150 simulation model framework

Listing 3: Example of a Service Provider Definition in NED Code

//Definition of the service provider module

module UCSrvProv

parameters:

srvPolicies: xml,

sites: numeric const;

gates:

in: srvRequest[];

in: ucServicesIn[];

out: srvResponse[];

out: ucServicesOut[];

submodules:

broker: SrvBroker;

site: Site[sites];

registry: SrvRegistry;

monitoring: SrvMonitoring;

connections:

for i=0..sizeof(srvRequest)-1 do

srvRequest[i] --> broker.srvRequestIn++;

srvResponse[i] <-- broker.srvResponseOut++;

endfor;

for i=0..sizeof(site)-1 do

broker.srvRequestOut++ --> InternalBackbone --> site[

i].srvRequest;

broker.srvResponseIn++ <-- InternalBackbone <-- site[

i].srvResponse;

monitoring.lbOut++ --> site[i].lbMonIn;

monitoring.lbIn++ <-- site[i].lbMonOut;

registry.lbOut++ --> site[i].lbRegIn;

registry.lbIn++ <-- site[i].lbRegOut;

monitoring.hstIn++ <-- site[i].conMonOut;

endfor;

for i=0..sizeof(ucServicesIn)-1 do

ucServicesIn[i] --> broker.ucServicesIn++;

ucServicesOut[i] <-- broker.ucServicesOut++;

endfor;

broker.monOut --> InternalBackbone --> monitoring.brkIn;

broker.monIn <-- InternalBackbone <-- monitoring.brkOut;

broker.regOut --> InternalBackbone --> registry.brkIn;

broker.regIn <-- InternalBackbone <-- registry.brkOut;

endmodule �
The NED code used for the simulation model framework of this

thesis comprehends more modules. Beside the previously introduced
model components, the following modules are specified: Site, SrvHost,
SrvBroker, SrvLoadbalancer, SrvInstance, StrgNetwork, SrvMonitoring, and
SrvRegistry. In addition, a MsgConcentrator and a SrvHostSwitch mod-
ule are defined as helper modules, in order to enable the consoli-

6.4 implementation of the simulation model 151

Figure 46: Screenshot of the Simulation Model Framework Implementation

dation of message flows over single connections. As channels for in-
terconnections, InternetLastmile, InternetBackbone, and InternalBackbone
are specified to provide different classes of bandwidth for service re-
quest transport.

6.4.3 Model Logic as C++ Components

The behaviour of simple modules defined in the model structure is
implemented in C++ components using the OMNeT++ simulation
library and kernel.

Figure 46 shows a screenshot of the simulation model framework
implementation based on OMNeT++. The window marked with 1

shows the top of the model hierarchy. Shown are the service con-
sumers, service providers and their connections. Window 2 shows,
as example, one service provider as the next hierarchy level of the
simulation model. The provider level consists of the service broker,
registry, monitoring, and sites. One level deeper, window 3 shows
the first site of service provider 1 with its service load-balancer, hosts,
and storage network. Window 4 shows the deepest hierarchy level.
On this level, the window shows the internals of the service host of
site 1. Primarily, the host consists of a fixed number of empty sockets
for service instances.

Some restrictions in the implementation of the model logic were
made and are detailed further.

The service monitoring and service registry are implemented as
structural stubs. Due to the experimental setup, the entities are mod-
elled within the framework, in order to verify their embedding in

152 simulation model framework

the implementation. The mechanisms for load prediction instead, are
not implemented within the components. Access to the service type
policies is implemented directly through the service broker.

The workflow step s-T is replaced by the logging of the underlying
simulation package.

The basic functionality of the decision tree is represented by an
ordered queue. The primary order criterion is the service level of ser-
vice requests. Requests of the same type are ordered by their arrival
time at the service broker. If the resources of the service broker to
queue and process service requests are exhausted, further incoming
requests are dropped.

Identical implementations of the queueing are used in the service
broker and service load-balancer.

6.4.4 Configuration of Simulation Runs

The simulation model framework is configured using a text file in
an OMNeT++ specific format. In addition, this framework uses the
ability of OMNeT++ to access files in the XML format. The main prop-
erties of a simulation run that are configurable are introduced below.

• Resources

Resource must be configured for all modules, except for the
service consumers. Each module offers attributes for the speci-
fication of abstract resources for processing, memory, and local
storage. Listing 4 shows the configuration of the host resource
as an example.

Listing 4: Example of a Resource Configuration for Service Hosts

#Processing resources

**.site[*].host[*].res_cpu = 100

#Memory resources

**.site[*].host[*].res_mem = 100

#Local storge resources

**.site[*].host[*].res_hdd = 100 �
For each module offering resource attributes, a corresponding
abstract reserve property (res_reserve) must be specified. The re-
serve refers to the processing resource and clarifies that systems
cannot be kept responsive, when they are used to 100 percent.

For each site, a representation of a storage-area-network is pro-
vided. To indicate the latency for its access, the property proc-
DurFac can be used. The property is used as multiplier of the

6.4 implementation of the simulation model 153

processing duration of a service request, in order to calculate
the latency of the storage-area-network.

• Resource grouping

As specified in the component model, service hosts provide
resources to process service requests. Hosts are grouped into
sites. A service provider can have multiple sites, specified in the
ucnet.<service-provider>.sites property. Each site can have multi-
ple hosts, defined in the ucnet.<service-provider>.site[<number>].hosts
property .

• Instances

Service hosts need to be configured with their maximum ca-
pacity for service instances (**.site[*].host[*].ld_maxInstances). Per
service type, only one service instance per service host can be
run. Service instances, by default, are deployed and instanti-
ated by the service load-balancer. After a configurable time-
out (**.site[*].loadbalancer.garbageCollectionDelay), during which
the instance is not used, service instances are removed from
hosts.

• Load-balancing

For load-balancing, two different modules are used. The ser-
vice broker conducts economical load-balancing between the
available sites and external service providers. Per site, a ser-
vice load-balancer distributes service requests to the available
service hosts. The scheduling strategy used tries to process the
given request flow with the minimal number of hosts. This en-
ables the deactivation of unused hardware to save energy costs.

To enable the comparison of different scenarios, the queueing
behaviour can be specified. Supported are first-in-first-out3 or
priority4 scheduling. Further, the queueing delay can be con-
figured. The number of requests simultaneously retrieved from
the queue can be configured.

Per site, a delay for the deployment of new service instances
to service hosts can be specified. In addition, the interval to
remove unused service instances can be defined.

3 The first arriving service request is also the first request to leave the queue.
4 Prioritised by service level class.

154 simulation model framework

Listing 5: Example of a Load-Balancing Configuration

#Queue sorting (0 = FIFO; 1 = by priority)

**.queuePriority = 0

#Delay of message before leaving the queue

**.queueDelay = 0.1s

#Number of messages retrieved from queue at once

**.queueFactor = 3

#Delay of instantiation of service instances on hosts

**.site[*].loadbalancer.deploymentDelay = 0.1s

#Interval for garbage collection

**.site[*].loadbalancer.garbageCollectionDelay = 120s �
Service Request Configuration

The behaviour on service requests for groups of service consumers is
specified using a link (ucnet.consumerGroup[<number>].srvRequestConfig
= xmldoc ("<srvRequest_consumerBehaviour.xml>")) to a corresponding
XML file from within the OMNeT++-specific text configuration.

Via the XML configuration, a service type is specified. The resource
demands for request processing and the resource demands during
the network transport of the request are defined. This includes the
bandwidth demand as well as the resource demand for load-balancing.

For service requests, a service level class and a corresponding max-
imum latency are specified. Also, a multiplier for margin calculation
is defined in the XML file. The consumer cost (or price) of a service re-
quest is the product of the provision costs multiplied with the margin
multiplier.

The usage pattern of the consumer group is defined in the XML

file, too. To specify a schedule for service requests, the initial delay
prior to the first action of a service consumer can be specified. A
delay between the sending of two service requests can be defined.
Correspondingly, the behaviour of the delay can be controlled in more
detail. Two types of delay behaviour are offered. The time interval
between the requests can either be fixed or some random deviation
can be added. The degree of deviation can be specified. The duration
of a request sequence can either be defined as absolute number of
requests or as time interval. In addition, it can be specified how often
a complete request sequence should be repeated.

At last, it can be configured that a request is to be sent after the
response of the previous request has returned. Or it is sent after a
certain timeout.

Listing 6 introduces the approach to configure service cascades. Ser-
vice request definitions can include other service request definitions
as sub-requests.

6.5 capabilities and restrictions of the framework 155

Listing 6: Example for the Configuration of Service Request Cascades

<srvRequest>

<param id="<uid>" value="<foo>"/>

<requestCascade>

<!-- EMBEDDED REQUEST-->

<srvRequest>

<param id="<uid>" value="<foo>"/>

<requestCascade>

</requestCascade>

</srvRequest>

<!-- EMBEDDED REQUEST-->

</requestCascade>

</srvRequest> �
Service Policies Configuration

The properties of the service type provision by service providers is
specified using a link (ucnet.<provider>.srvPolicies = xmldoc ("srvPolicy_providerBehaviour.xml"))
to a corresponding XML file from within the OMNeT++-specific text
configuration.

Via the XML configuration, several service types can be specified.
Each service type includes the definition of properties for cost calcu-
lation and priority specification. Cost of service request of a specific
service type can be fixed per request or calculated based on the re-
source consumption. To calculate the dynamic price per request, the
costs per resource and a multiplier to calculate an additional margin
for the service provider are specified.

In the case different service providers offer the same service type,
a weight can be specified to enforce a selection order.

6.5 capabilities and restrictions of the framework

Modelling of Consumer, Provider & Service Relations

The framework enables the modelling of an unlimited5 number of
consumer groups and service providers. Each consumer group al-
ways relates to one specific service provider. Consumers of one group

5 Restricted by the resources and capabilities of the underlying software and hard-
ware.

156 simulation model framework

use a single service type. The given scheduling properties allow the
modelling of simple request distribution over time. It is possible to
define a sequence of requests. The distribution of requests within the
sequence can be either fixed or randomly varied within a given time
frame. Previous to a sequence, a delay can be defined. Sequences
can be repeated. More complex distributions can be achieved by com-
bining multiple consumer groups, in order to represent complex be-
haviour. Behaviour beyond the combination of multiple consumer
groups for the representation of complex behaviour is not supported
(e.g., non-linear, fully randomised, or standard distributions).

For the analysis of complex service cascades, a loop detection is not
implemented. Service requests invoking sub-requests to themselves
will not be detected.

Modelling of Costs & Pricing

The modelling of pricing for resource usage is basically supported.
Service usage can be charged by a fixed price per request or by re-
source usage during processing. In case of the pricing by resource
usage, the resource costs are calculated and a percentaged provider
margin is added. Within service cascades, the cost information is col-
lected from sub-requests and added to the total costs of a request, if
the request is charged by usage.

Complex pricing models (e.g., discounts per consumer group or
per request quantity) cannot be represented using the simulation
model framework.

Part III

E VA L U AT I O N

7
E VA L U AT I O N O F T H E S I M U L AT I O N M O D E L
F R A M E W O R K

In this chapter, the previously introduced Simulation Model Frame-
work (SMF) (cf. Section 6) is evaluated, in order to determine its qual-
ification to enable the modelling of SOC service offers hosted on IaaS

(cf. Section 2.6). The SMF is build on the contributions of this thesis.
The evaluation of the framework also evaluates these outcomes.

Section 7.1 evaluates the basic features of cloud platforms based on
test cases well known in the research community. In Section 7.2, the
framework is evaluated based on an independent test case, in order
to analyse quality and profit assurance in UC service cascades.

7.1 evaluation of basic cloud scenarios

7.1.1 Test Cases Derivation

To evaluate the output of the evolved SMF, at least one service provi-
sion scenario and corresponding reference values for the comparison
with simulation run results are necessary. To gain such scenarios and
reference values, the published experiments of Buyya’s CloudSim
framework (cf. Section 6.2) are used. As Calheiros et al. aim at mod-
elling cloud platforms, the publications introducing CloudSim in-
clude the description of experiments to evaluate its qualification, in
order to enable the modelling of SaaS and IaaS scenarios.

For the evaluation of the SMF, three test cases are extracted from
the publications of the CloudSim framework. As basic test case, Cal-
heiros et al. refer to the federation of cloud computing components
between available resource pools (cf. Section 7.1.2). As second test
case, the framework is evaluated on its ability to model hybrid cloud
environments (cf. Section 7.1.3). Section 7.1.4 evaluates the ability of
SMF to model high loads in Cloud environments.

7.1.2 Federation of Cloud Components

Test Case

The ability of CloudSim to model scenarios of the distribution of
cloud computing components on given resource pools is evaluated
in a small test case. Calheiros et al. describe an experimental setup

159

160 evaluation of the simulation model framework

(Calheiros et al., 2011a) with three providers of cloud resources of-
fering their resources to a single service consumer. Each data centre
is modelled providing 5

1 computing hosts, each offering a capacity
of 10 GB of memory, 2 TB of storage, and 1000 MIPS of processing
resources.

The service consumer requests 25 VMs with each requiring 256 MB
of memory, 1 GB of storage, and one processor. Associated to each
VM is a cloudlet with a resource demand of 1800000 MI. The request
is sent to the primary data centre. The other centres are provided as
secondary resources for the usage through the primary centre.

Two scenarios are being compared. In the first scenario, the pri-
mary data centre does not rely on the resources in the secondary
centres for request processing. In the second scenario, in addition to
the primary resources, the secondary resources are used to processes
the workload.

Experimental Setup

The previously introduced test case is modelled in the SMF as a single
service consumer group to service provider relation. A service con-
sumer group invokes 25 service requests of the same service type. The
requests are scheduled with a delay of one second between each re-
quest. The resource demand of the requests is modelled, correspond-
ing to the test case with 256 MB memory, 1 GB storage, and 100 %
processor usage for 1800 seconds.

The resources of the service provider are equally split on three sites.
Each site consists of five hosts, each with a resource offering of 10 GB
memory, 2 TB storage, and 1000 MIPS processing capacity.

The processing effort for request transport on the service broker
and service load-balancer is set to 1 MI. The network traffic generated
by a single service request is configured to 10 MB. The available net-
work bandwidth between the service consumer group and the service

1 In the original publication, the number of hosts is specified to 50.
The analysis of the experimental setup reveals that taking 50 hosts into account
does not provide a necessary bottleneck that could be solved by federation. For
the specified example workload, 25 hosts are sufficient to calculate all cloudlets in
parallel. To gain an observable effect, the number of hosts per data centre must be
smaller than 25.
Calculating backwards, the results of Calheiros et al., for a processor with 1000

Million Instructions Per Second (MIPS), a cloudlet with 1800000 Million Instruc-
tions (MI) would take 1800 seconds as makespan. For the 25 specified cloudlet in-
stances this results in an overall sequential makespan of 45000 seconds. Divided by
the published overall makespan of 8405 seconds, this results in approximately 5.4
parallel calculating cloudlet instances in mean.
The issue has been discussed with R. N. Calheiros, as the corresponding author
of the publication, who acknowledges the issue. Therefore, this thesis continues to
work with the number of 5 hosts per data centre.

7.1 evaluation of basic cloud scenarios 161

Average turn around time (s) Makespan (s)

CS-1S 4700.1 8405

CS-3S 2221.13 6613.1

SMF-1S 5471.8 9094.1
SMF-3S 2958.5 5490.5

Table 1: Result Comparison Between CloudSim (CS) and the Simulation
Model Framework (SMF) in Cases Without Federation (1S) and With
Federation (3S)

broker is specified to 50 Mbit per second and a delay of 10 millisec-
onds. The interconnections between the service provider’s internal
components are configured to 1 Gbit per second and a delay of 0.1
milliseconds. The SMF implements prioritised queues on the service
broker and service load-balancer. Another delay of 10 % of the trans-
port processing effort is added, in order to model the forwarding pro-
cess on the broker and load-balancer. Another time consuming factor
is the deployment delay for the initialisation of new service instances
on a service host. This delay is set to 60 seconds. In addition, the de-
lay for the interaction of a service instance with the storage network
has to be taken into account as well. This overhead consists of the
network delay between the hosts and the storage network and the
processing of the storage access in the storage network.

Costs, pricing, and service levels are not configured.

First Outcomes

Examined are the average turn around time of the service requests
and the makespan2, in order to retrieve all requests, corresponding to
the analysis published by the CloudSim project. The turn around time
is defined as the timespan between the sending of a service request
and the receiving of a corresponding response.

Results that are about 5 % slower, compared to the results of CloudSim,
have been expected. The overhead should exist due to the modelled
queueing in the service broker and service load-balancer, for service
deployment delays on the service hosts, and due to the modelling of
the network bandwidth demands.

The first outcomes, illustrated in Table 1, indicate that the SMF is
able to model the federation of cloud components. The deviations of
the results between SMF and CloudSim are acceptable. They can be

2 The term makespan is defined by Calheiros et al. as the total timespan between the
sending of the first service request and the receiving of the last response of all sent
requests.

162 evaluation of the simulation model framework

explained by the imprecision in the mapping of the test case. The
previously highlighted model-specific deviations (e.g., modelling of
queueing, deployment, and networking) impact the results. Due to
the problem in the interpretation of the original resource setup, the
number of hosts is only an approximation to the original resource
offering. The two frameworks use differing scheduling strategies to
route requests to the available sites. The SMF additionally models the
delay for accessing storage networks.

7.1.3 Hybrid Cloud Provisioning

Test Case

The ability of CloudSim to model scenarios with public and private
clouds is evaluated in a small test case. Calheiros et al. describe an
experimental setup (Calheiros et al., 2011a), where two providers of
cloud resources offer their resources to a single service consumer. The
private data centre of provider A is modelled providing 100 comput-
ing hosts, each with a capacity of 2 GB of memory, 10 TB of stor-
age, and 1000 MIPS of processing resources. The public data centre
of provider B is modelled providing a varying number of computing
hosts, each with a capacity of 1.7 GB of memory, 160 GB of storage
and 1000 MIPS processing resources. For different simulation runs, the
number of hosts in the public data centre is varied between 10 and
100 hosts.

The service consumer sends 10000 requests as cloudlets with a
mean resource demand of 1260000 MI (1000 MIPS used for 21 min-
utes). The resource demand of the corresponding VM for the cloudlet
is not explicitly specified, beside that one processor is allocated per
VM. The requests are sent to the private data centre. The public data
centre is used by the private centre in cases of peak demands.

Eleven scenarios are being compared. In the first scenario, the pri-
vate data centre does not rely on public resources for request process-
ing. In the other scenarios, in addition to the private resources, the
public resources are used to processes the workload. As differing sce-
narios, simulation runs are setup with 10, 20, 30, 40, 50, 60, 70, 80, 90,
and 100 hosts.

Experimental Setup

The previously introduced test case is modelled in the SMF as a sin-
gle service consumer group to service provider relation. A service
consumer group invokes 10000 service requests of the same service
type. The requests are scheduled with a delay of one millisecond be-

7.1 evaluation of basic cloud scenarios 163

tween each request. The resource demand of the requests is modelled
corresponding to the previous test case with 256 MB memory, 1 GB
storage, and 100 % processor usage for 1260 seconds.

The resources of the service provider are located on two sites. The
first site represents the private cloud resources. It consists of 100 hosts,
each with a resource offering of 2 GB memory, 10 TB storage, and
1000 MIPS processing capacity. The second site represents the pub-
lic cloud resources. It consists of 10 to 100 hosts, dependent on the
simulation run configuration. Each public cloud host offers 1.7 GB of
memory, 160 GB of storage, and 1000 MIPS processing capacity.

The processing effort for request transport on the service broker
and service load-balancer are set to 1 MI. The network traffic gener-
ated by a single service request is configured to 10 MB. The avail-
able network bandwidth between the service consumer group and
the service broker is specified to 50 Mbit per second and a delay of
10 milliseconds. The interconnections between the service provider’s
internal components are configured to 1 Gbit per second and a delay
of 0.1 milliseconds. The SMF implements prioritised queues on the ser-
vice broker and service load-balancer. Another delay of 10 % of the
transport processing effort is added, in order to model the forward-
ing process on the broker and load-balancer. Another time consum-
ing factor is the deployment delay for the initialisation of new service
instances on a service host. This delay is set to 60 seconds.

Costs, pricing, and service levels are not configured.

First Outcomes

Examined are the makespan for all initialised requests and cost pre-
diction for the respective public cloud usage, corresponding to the
analysis published by the CloudSim project. For the cost predictions,
it is estimated that the costs of a utilised VM are charged with U$ 0.10

per hour of usage.
As in the previous test case, the results are expected to be 5 %

slower compared to the results of CloudSim.
The first outcomes, illustrated in Table 2, indicate that the SMF is

able to model scenarios comprehending public and private clouds.
The deviations of the results between SMF and CloudSim are accept-
able. Just like the previous deviations, they can be explained by the
imprecision in the mapping and model-specific deviations.

164 evaluation of the simulation model framework

Makespan (s) Cost (U$)

CS-P 127155.77 0.00

CS-P+10 115902.34 32.60

CS-P+20 106222.71 60.00

CS-P+30 98195.57 83.30

CS-P+40 91088.37 103.30

CS-P+50 85136.78 120.00

CS-P+60 79776.93 134.60

CS-P+70 75195.84 147.00

CS-P+80 70967.24 160.00

CS-P+90 67238.07 171.00

CS-P+100 64192.89 180.00

SMF-P 126568.1 0.00

SMF-P+10 115211.9 32.00

SMF-P+20 106232.1 60.00

SMF-P+30 98501.3 84.00

SMF-P+40 91109.7 104.00

SMF-P+50 84928.7 120.00

SMF-P+60 79817.5 132.00

SMF-P+70 75788.9 147.00

SMF-P+80 70993.2 160.00

SMF-P+90 68154.6 171.00

SMF-P+100 64371.9 180.00

Table 2: Result Comparison Between CloudSim (CS) and the Simulation
Model Framework (SMF) in a Private (P) and Public (+<hosts>)
Cloud Setup

7.1 evaluation of basic cloud scenarios 165

7.1.4 Cloud Computing Environments Under High Load

Test Case

The ability of CloudSim to model scenarios with QoS-scheduled cloud
resources is evaluated in a small test case. Calheiros et al. describe
an experimental setup (Calheiros et al., 2011b), with one provider of
cloud resources offering its resources to a group of service consumers.
The providers’ data centre is modelled providing 1000 computing
hosts, each with a capacity of 16 GB of memory and 1000 MIPS of
processing resources. The storage capacity is not modelled in this test
case.

The group of service consumers sends their requests with a ran-
dom variation of the delay. The request workload is modelled based
on a simplified version of the Wikipedia access logs published by Ur-
daneta et al. (2009), representing a typical web workload for highly
frequented websites. The workload varies between 500 and 1200 re-
quests per second on Tuesday to Friday. The deviation on Saturday
to Monday is in its maximum 400 to 900 requests per second. The
resource demand of a request is specified to occupy the VM resources
for 100 milliseconds. The corresponding VM for the cloudlet uses 2

GB of memory and offers a processing capacity of 125 MIPS.
Compared are six scenarios, varying in the number of VMs allo-

cated to process service requests and in the scheduling approach to
allocate VMs. For scheduling five static and one self-evolved dynamic
approach are being compared. For the static approach, the number
of VMs is varied from 50, 75, 100, 125, up to 150 instances serving
requests. In case of the dynamic approach, the VM demand is cal-
culated and dynamically adapted by the scheduler. The maximum
tolerated turn around time of a service request is specified to 250

milliseconds. Higher response times are assessed as SLA fails.

Experimental Setup

The previously introduced test case is modelled in the SMF based on
a thirteen service consumer groups to one service provider relation.
The service consumer groups are used to model the variation of the
request workload over time. Each group continuously sends service
requests with a constant frequency over a specified period of time. For
each group, a varying delay is specified before the request sequence
is initialised. Table 3 lists the corresponding configuration. Figure 47

illustrates the resulting mean request distribution over time for a 24

hours period. Modelled is a period with high workload between 500

and 1200 requests per second.

166 evaluation of the simulation model framework

Request Frequency Initialisation Delay (s) Period (s)

G-01 500 0 86400

G-02 91 3600 79200

G-03 90 7200 72000

G-04 87 10800 64800

G-05 82 14400 57600

G-06 76 18000 50400

G-07 69 21600 43200

G-08 60 25200 36000

G-09 51 28800 28800

G-10 40 32400 21600

G-11 29 36000 14400

G-12 18 39600 7200

G-13 6 43200 3600

Table 3: Configuration of the Modelled Service Consumer Groups (G)

Figure 47: Mean Request Distribution of the Service Consumer Group

7.1 evaluation of basic cloud scenarios 167

The resource demand of the requests is modelled with 2 GB of
memory, 1 MB of storage, and 100 % processor usage for 100 millisec-
onds.

The resources of the service provider are located on one site. As
scenario, 19 hosts are chosen, comparable to the setup of Calheiros
et al. using 150 instances. The quantity of hosts is calculated using
the number of VMs as reference. For 150 VMs with a VM processing
capacity of 125 MIPS and a host VM capacity of 1000 MIPS, then this
enables 8 VMs per host and results in a demand of 18.75 units of host
capacity or 19 hosts. The original number of hosts is insignificant.
Each host offers 16 GB of memory, 10 TB of storage, and 1000 MIPS
processing capacity.

The processing effort for request transport on the service broker
and service load-balancer are set to 1 MI. The network traffic gen-
erated by a single service request is configured to 1 KB. The avail-
able network bandwidth between the service consumer group and
the service broker is specified to 1 Gbit per second and a delay of 10

milliseconds. The interconnections between the service provider’s in-
ternal components are configured to 2 Gbit per second and a delay of
0.1 milliseconds. The SMF implements prioritised queues on the ser-
vice broker and service load-balancer. Another delay of 10 % of the
transport processing effort is added, in order to model the forward-
ing process on the broker and load-balancer. The service instances on
the service hosts are preinitialised before requests are sent, in order
to save the deployment delay.

Costs, pricing, and service levels are not configured.

First Outcomes

Examined are the average response time and corresponding standard
deviation for all requests, the resource utilisation in percent, and the
percentage of requests failing the SLA. These metrics correspond to
the analysis published by the CloudSim project.

In comparison with CloudSim, results that have a 5 % higher aver-
age response time, a comparable standard deviation of the response
times, a significant higher resource utilisation, and comparable SLA

fails have been expected.
The outcomes of Calheiros et al. are depicted as part of Figure 48.

Figure 48 depicts two of the variants analysed by Calheiros et al.: CS-
Adp as a variant with an adaptive scheduling strategy for resource
allocation and CS-150 as a variant modelling fixed resource allocation.

The first outcomes indicate that the SMF is able to model high re-
quest loads. The deviations of the results between SMF and CloudSim
are acceptable, as it can be explained due to the previously high-

168 evaluation of the simulation model framework

Figure 48: Result Comparison Between CloudSim (CS) and the Simulation
Model Framework (SMF) in High Load Scenarios

7.2 evaluation of advanced cloud scenarios 169

lighted model-specific deviations (e.g., modelling of queueing, de-
ployment, and networking). The shorter times for request processing
allow greater influence for the queueing model and network delays.
For both frameworks, the rate of SLA fails is insignificant (0,03 % for
SMF).

7.2 evaluation of advanced cloud scenarios

The test cases in the previous section demonstrate clearly that the
SMF and its underlying model are capable of modelling basic cloud
scenarios. In this section, scenarios enabling the quality and profit
analyses in UC service cascades are evaluated.

7.2.1 Simple Service Cascades

Experimental Setup

This experimental setup shows the ability of SMF to model cloud sce-
narios including differing SLA, different cost domains, and service
cascades using external service offers. As a basis, a modified version
of the experimental setup introduced in Section 7.1.4 is used.

One cloud provider offers a single service to two differing con-
sumer groups. The first group contracts a lower service level than
the second group. For both groups, the service level criterion is the
time-frame between the sending of a service request and the receiv-
ing of its processed response. For group one, the maximum tolerated
response time is 500 milliseconds. For group two, it is specified to 300

milliseconds. Higher response times are assessed as SLA fails.
The workload modelled for each group is derived from the pre-

viously introduced simplified Wikipedia workload. To enable faster
simulation runs, only one hundredth of the previously described
workload is used. The workload for the first group is modelled as
2/3 of the request frequency at a time of the workload while, for the
second group, the workload is modelled as 1/3 of the frequency at
a time. Corresponding to the mapping in the previous section, each
workload modelled in the SMF is based on thirteen service consumer
groups, in order to represent the variation of the request workload
over time. Figure 47 illustrates the resulting mean request distribu-
tions over the simulation time of 24 hours.

All service requests of group one are sent with the lower service
level 2. Requests from group two are sent using the better service
level 1.

170 evaluation of the simulation model framework

Figure 49: Mean Request Distributions of the Service Consumer Groups

Differing from the previous case, a request to the service offer of
provider one includes two sub-requests. The service offer of provider
one is introduced as service type A. Both sub-requests, introduced
as service types B and C, are each offered by one external provider.
Service type A can be described as route planning service for car trav-
elling. It uses service type B as service for traffic density information.
Service type C offers information about the regional weather regard-
ing a planned route. This scenario is based on the scenario introduced
by Bodendorf and Schobert (2003). All service requests are modelled
with an identical resource demand, as introduced in Section 7.1.4.

The data centre of provider one consists of two sites. One site rep-
resents a rack as cost domain, which contains newer hardware with a
lower demand in electrical power and cooling capacity. Resulting, the
cost of operation for hosts in site one is lower than on site two. The
second site models a rack containing older hardware with a higher
demand in electrical power and cooling capacity. Resulting, site two
has higher cost of operations. Service types A is hosted on these sites
as demanded, dynamically adapted by the routing decisions of the
service broker. Both external providers are each modelled with one
site containing sufficient resources to offer their individual service
types.

Each external service provider is equipped with identical resources.
The resources (10 hosts) are sufficient to process all service requests,
even on peak load. The service provider is modelled with two sites.
One site represents the older rack with a single host, the other site

7.2 evaluation of advanced cloud scenarios 171

Figure 50: Overview of the Experimental Setup Architecture

represents the newer rack with one or two hosts, dependent on the
scenario analysed. Each host offers a capacity of 16 GB of memory,
10 TB of storage, and 125 MIPS processing resources. This setup is
derived from the Static-125 setup in Section 7.1.4.

Compared are the results of four simulation runs. The runs differ
in the configuration of the prioritisation of the request queues and
in the number of hosts available. Run FIFO-2 models two hosts as
resources for service A using a first-in-first-out queue, with incoming
requests being forwarded in the order of their arrival. Run PRIO-2
uses a prioritised queue instead. The prioritisation criterion is the
service level of a request. Run FIFO-3 and PRIO-3 use an additional
host in the newer rack, while differing in their queue prioritisation.

The effort for transport and the network resources are modelled
corresponding to the configuration chosen in Section 7.1.4. Service
instances are deployed to and removed from hosts on demand with a
deployment delay of 1 millisecond. Costs are basically configured to
enable routing decisions for the service broker. The cost configuration
demonstrates a symbolic cost difference of 1 cost unit between site 1

and 2.
An overview of the architecture of the specified experimental setup

is illustrated in Figure 50.

First Outcomes

Examined are the average response time, corresponding standard de-
viation, percentage of requests failing the SLA, percentage of dropped
requests, resource utilisation in percent, and total costs for resource
usage. The average response time, corresponding standard deviation,
percentage of requests failing are calculated per SLA group. These

172 evaluation of the simulation model framework

Figure 51: Average Response Times of Runs FIFO-2, PRIO-2, FIFO-3, and
PRIO-3 Differentiated by Service Level (SL) and Corresponding
Standard Deviation (d)

Figure 52: Fail Rate of Runs FIFO-2, PRIO-2, FIFO-3, and PRIO-3 Differenti-
ated by Service Level (SL)

metrics have been chosen, in order to correspond to the analysis from
Section 7.1.4.

Figure 51 depicts the average response time and corresponding
standard deviation for the runs FIFO-2, PRIO-2, FIFO-3, and PRIO-
3. For the purpose of a better comprehension of the relations, the
illustration of the standard deviation is scaled up by the factor 200.
The original deviation displayed near the illustration is identified by
d. The average response time is differentiated by the two service levels
modelled.

Figure 52 illustrates the percentage of requests failing the SLA. This
rate reflects processed requests that failed the maximum allowed la-
tency. It excludes dropped requests. The percentage of dropped re-
quests is depicted in Figure 53.

The resource utilisation in percent and the total costs for resource
usage are not varying between the two used queue techniques. Fig-
ure 54a depicts the variation in the resource utilisation between the
scenarios with two or three hosts. The variation in the total costs
for the resource consumption during the processing of all service re-
quests, including the failed requests, is illustrated in Figure 54b. This
excludes the dropped requests, as they have not been processed.

7.2 evaluation of advanced cloud scenarios 173

Figure 53: Drop Rate of Runs FIFO-2, PRIO-2, FIFO-3, and PRIO-3 Differen-
tiated by Service Level (SL)

(a) Utilisation Rate (b) Provision Costs

Figure 54: Utilisation Rate and Provision Costs of Runs FIFO-2, PRIO-2,
FIFO-3, and PRIO-3

174 evaluation of the simulation model framework

Figure 55: Service Cascade Including Service Bill Flow

The first outcomes indicate that the SMF is able to model cloud sce-
narios including differing SLAs, different cost domains, and service
cascades using external service offers. The outcomes also indicate
that the results of SMF enable the analysis of service quality and cost
aspects of such cloud scenarios.

7.2.2 Complex Service Cascades

Experimental Setup

This experimental setup is a variation of the previous setup in Sec-
tion 7.2.1. As extension to the previous setup, the service cascade is
enhanced to include another service offer. The new service offer mod-
els a sub-request of service type C. In addition, the setup is varied,
in order to use binding of service instances to sites (service type A is
bound to site 1 and 2; service type D is bound to site 3 and 2) and ser-
vice billing throughout the service cascade. Figure 55 illustrates the
modelled service cascade. The figure also depicts the flows of service
bills within the cascade.

As variation to the previous setup, the service provider for service
type A is modelled with an additional site. Each provider site now
offers seven hosts.

First Outcomes

As the previous section already analysed metrics like response time,
standard deviation, request fails and drops, resource utilisation, or
processing costs, this section introduces a closer look on an exemplary

7.3 evaluation summary 175

selection of data retrievable from SMF. Figure 56a illustrates the mean
of the processor load on one of the service hosts located on site 1.
The graph shows that the host is constantly under load processing
requests for a single service type. For comparison, Figure 56b shows
the mean of the processor load on one of the service hosts located on
site 2. As site 2 is used by two service types, the graph depicts the
load share of both service instances. Figure 56c illustrates the mean
of the processor load on the service broker. Corresponding, Figure
56d and 56e show the mean of the processor load on the service load-
balancers on site 1 and 2. In Figure 56f, the mean of the costs for the
request processing of service consumer group 1 is depicted.

7.3 evaluation summary

In Section 7.1, this chapter presents common cloud scenarios. The
SMF is used to model such scenarios and to compare the results of the
simulations runs with the outcomes of Calheiros et al.. The evalua-
tion shows the ability of SMF to model common cloud scenarios with
comparable outcomes to the works of Calheiros et al..

Section 7.2 evaluates the ability of SMF to model cascaded SOC ser-
vice offers hosted on IaaS. The analysed scenarios are enhancements of
a scenario used by Calheiros et al.. The scenario is expanded by a ser-
vice cascade introduced by Bodendorf and Schobert. To further clarify
the potential of SMF, the service cascade is advanced to a cascade in-
cluding internal and external service offers, cascaded sub-requests,
resource binding, and cost forwarding in service cascades. The first
outcomes of these simulation runs show the ability of SMF to model
advanced cloud scenarios with complex pay-per-use service cascades.

In comparison to the models introduced in Section 6.2, the SMF of-
fers a more detailed resource abstraction compared to Buyya’s CloudSim.
The CloudSim model misses a service broker with support for eco-
nomical load-balancing and the modelling of the BSLA approach.

GroudSim offers very basic building blocks to model UC service
cascades compared to the detail level achievable using SMF.

Another related work introduced in the previous chapter is Green-
Cloud. In comparison to SMF, GreenCloud is not sufficient to map UC

service cascades in the context of this thesis. The model’s building
blocks are able to basically model the relation between consumer, ser-
vice, and resource. More complex UC characteristics, as introduced in
Section 2.6, can not be modelled.

Summarising the related work, using SMF permits the modelling of
economical load-balancing based on BSLA by using complex UC ser-
vice cascades in a simulation framework, in order to analyse economi-

176 evaluation of the simulation model framework

(a) Mean of Processor Load on
One of the Service Hosts on
Site 1

(b) Mean of Processor Load on
One of the Service Hosts on
Site 2

(c) Mean of Processor Load on the
Service Broker

(d) Mean of Processor Load on
the Service Load-Balancer of
Site 1

(e) Mean of Processor Load on the
Service Load-Balancer of Site
2

(f) Mean of Request Processing
Costs for Service Consumer
Group 1

Figure 56: Examples of Analysable SMF Metrics

7.3 evaluation summary 177

cal and technical hypothetical questions of service providers through-
out a service’s life cycle.

The SMF has the ability to model an infinite number of consumer
groups and service providers with complex and unlimited service us-
age relations among these actors. The scheduling properties allow the
modelling of request distribution over time, up to complex distribu-
tions that can be achieved by the combination of multiple consumer
groups.

The modelling of pricing for resource usage is supported as fixed
price per request or by resource usage during processing. The evalua-
tion has only rudimentary made use of these features, as the selected
scenarios did not offer the ability for a useful inclusion of payment
analyses in the given service cascades. Further details about the mod-
elling of costs and pricing are given in Section 6.5.

As the most elaborated part of this thesis, the evaluation demon-
strates the successful interrelation of the thesis outcomes in an exe-
cutable model that enables control and prediction on service quality
and profit.

The implementation of the SMF limits the use to simulation models
that address multi-tier architectures. For the modelling of architec-
tures that do not correspond to the proposed data model the SMF is
not suitable.

Summarising, this chapter strongly indicates the capabilities of the
thesis contributions to represent the core relation of UC, in order to
enable the analysis, development, and operation of all in all more
cost efficient SOC service offers. This optimisation of cost efficiency is
enabled by the underlying delivery framework, which is the basis for
improved control and prediction of service quality and costs.

As lessons learned from the first outcomes of the evaluation, six
topics are identified:

• The data model should be extended to include power consump-
tion per service host. This would induce a more comfortable
analysis of the simulation outcomes;

• The SMF implementation should be extended to:

– Support an additional abstraction layer, in order to map
time varying schedules in the service consumer compo-
nent. This would improve the overview of complex request
models;

– More efficiently handle large request amounts by reimple-
menting often used code sequences. This would speed up
the calculation of complex simulation runs;

178 evaluation of the simulation model framework

– Support a more granular configuration of the logging of
the result vectors. This has been implemented already. The
configuration enables smaller log files, what speeds up the
analysis and leads to less system load during simulation
runs;

– Enable parallel calculations of the simulation runs, in order
to speed up simulation runs for complex models with long
simulation times.

– Include fixed costs per time unit for each resource offer.

Concluding, the first outcomes of the evaluation of the SMF and un-
derlying delivery framework clearly demonstrate a novel degree in
the clarification and optimisation of the association between the UC

business model and SOC architectures hosted in Cloud environments.

8
C O N C L U S I O N S

The research aims to optimise the control of service quality and profit
for SOC service offers based on Utility Computing business models.
The elaborated delivery framework helps service providers optimise
future UC service provision throughout their entire life cycle.

To evolve an effective strategy to enable the optimisation of con-
trol of service quality and profit in service life cycles, related work
and corresponding service provision requirements are collected and
analysed.

The following approaches from related work are reviewed:

• Provision models for UC platforms to model either UC, Cloud,
Grid, or application cluster models;

• Usage-centred assurance of service quality in Cloud Comput-
ing.

The review shows that no existing approach addresses all the require-
ments identified.

The collection of the service provision requirements comprehend
the analysis of:

• Utility Computing-specific relations inside a generic service life
cycle;

• Utility Computing-specific requirements on provision quality
control;

• Primary requirements on provision platforms for SOC service
offers based on UC business models.

Concerning the specific requirements of SOC service offers based on
UC business models, the analysis reveals the demand for approaches
to improve:

• Description of the customer-service-resource relation in corre-
sponding service life cycles;

• Service quality control concerning such service offers;

• Analysis of complex service cascades.

179

180 conclusions

Corresponding approaches are elaborated in a combined usage-centred
provision approach introduced as delivery framework. The included
approaches model the requirements, control structures, and informa-
tion demands, in order to enable the optimisation of control of service
quality and profit in the considered service life cycles.

8.1 contributions

This thesis offers discrete approaches for the following problems. The
analysis of the relations within service life cycles reveals a demand for
an improved representation of the customer-service-resource relation.
Particularly, service level agreeing, life cycle information exchange,
support for make-or-buy decisions, economic-efficient quality con-
trol, and the analysis of complex service cascades are identified as
problems that prevent economic availability management and effec-
tive pay-per-use pricing models.

Due to Liang-Jie Zhang (2007, p. 328), a common model for UC

service life cycles would be helpful, in order to track the variations
and analyse the impacts among the life cycle phases.

Due to Mendoza (2007, p. 228), a key issue in service development
is the consideration of estimated usage behaviour to improve quality
assurance.

This research provides approaches to close these gaps. Some as-
pects of these findings challenge current thinking regarding the pay-
per-use management in service cascades, the merge of business, con-
sumer, and technical quality views, and the indirect feasibility rating
for service cascades. This research highlights the relations within a
service life cycle and links them to the specific requirements imposed
for service provision quality and corresponding provision platforms.
Therefore, the achievements of this research lie beyond the evolved
approaches in the progressing of a deeper understanding of how UC

service quality is related to a service’s life cycle.
As comprehensive outcome, this thesis introduces an executable

model for a delivery framework that enables control and prediction
on service quality and profit for its user.

8.1 contributions 181

As distinct outcomes, the following approaches are introduced:

• Technology-independent core provision model for Utility Com-
puting platforms

The approach models a generic technology-independent com-
ponent architecture for incorporation into an architectural pat-
tern, in order to prepare a software/provision architecture for
UC services. The model allows its users the consistent integra-
tion of the identified UC requirements into software/provision
architectures.

• Concept for usage-centred assurance of service quality

The concept of usage-centred assurance of service quality merges
the business, consumer, and technical quality views, as a significant
aspect of this research. By introducing a usage-centred quality
specification, it enables the monitoring and control of provision
quality contracted on service usage rather than on technical re-
source limits.

• Technology-abstracted resource and cost simulation model

A simulation model for multi-tier UC service architectures has
been built based on the previous findings. Constitutive simu-
lation runs are valuable tools to enable the analysis of service
cascades in terms of resource demand, price and cost evalua-
tion, and structural weaknesses.

The major contributions of this thesis have been published to, refer-
eed by and discussed with the community in the Cloud Computing
field of research. The positive feedback from reviewers indicates that
this research is making appropriate and useful contributions to this
field.

Beside the scientific impact, portions of the contributions already
have significant impact on industrial partners of this research. Three
business partners1 sponsored particular parts of the research project
and used the outcomes to evolve new business models for their future
Cloud Computing strategies.

1 rh-tec AG, Löhne, Germany; secco advanced GmbH, Grossostheim, Germany; T-
Systems International GmbH, Frankfurt, Germany.

182 conclusions

8.2 limitations

Limitations of this thesis are discussed from two points of view re-
garding the quality of method and the quality of findings.

Analysing the chosen research method, the evaluation of the find-
ings based on the comparison of simulation results of two simula-
tion model frameworks can be discussed. Although, a commonly ac-
cepted simulation model framework is chosen and the relevant test
cases have been rebuilt, the comparison of the simulation results to
a real world system would improve the generalisability of the gath-
ered results. Nevertheless, the gathered results are sufficient as first
outcomes, in order to enable a resilient focus on the quality of the
findings.

Although the evaluation has been calculated on on average 6 cores
over four weeks, parallel simulation implementation on significantly
more cores is required to enable the simulation of real world systems
modelling more than 36 hours of service usage, complex service cas-
cades, and multiple large scale data centres.

Analysing the findings of this thesis, some limitations can be iden-
tified. The usage-centred data model only considers the stakeholder
relations of incoming service requests, so that relations to third-party
service providers are excluded. The simulation model framework only
addresses multi-tier architectures. The component model excludes
some non-minimal requirements that are considerable in this context:
embedding of legacy applications (Req39), administration-related re-
quirements (Req39-43), and deployment policies (Req44).

The work presented should be reviewed on a regular basis to reflect
new versions of ITIL and COBIT as they appear.

8.3 future work

In order to build on the contributions of this thesis, a number of
research aims are being proposed in the following:

• Estimation of resource demand of service requests

To enable more efficient simulation models in the future, the es-
timation of the resource demand of individual service requests
has to be optimised. To increase the precision of predictions, the
individual resource demand of service requests of differing con-
sumer groups in real world systems has to be gathered. Simple
metering of request amounts and a general rough estimation of
processing demands do not offer the aimed precision.

8.4 technology review 183

• Racks as new grouping component

It might improve the modelling of real world systems when
racks as additional layer for the grouping of resources are con-
sidered. This might be helpful to map existing data centres,
where energy consumption per rack is a relevant issue.

• Representation of power consumption & cooling capacities

The expansion of the data model to directly map the power
consumption of resources is considered as useful. This would
enable a more efficient analysis of the results of simulation runs.
Also included in the expansion should be a maximum power
capacity per rack and/or site. In addition, the power capacity
could be linked to boundaries for cooling capacity, if applicable.

• Virtualisation layer as expansion

The expansion of the core provision model to enable the mod-
elling of a virtualisation layer should be verified. As it is not
considered to be useful in the SOC context, it might broaden the
usability of the delivery framework in other service provider
contexts.

• Runtime estimations of resource usage

It could be useful to verify, whether a specialised implementa-
tion of the simulation model framework can be used at runtime,
embedded in a service broker implementation. This might im-
prove future routing decisions and subsequent resource utilisa-
tion.

8.4 technology review

Concluding this research, the contributions are reviewed in a broader
context. The initial aim to support service providers that are pushed
into the role of utilities by their customer’s expectations, this thesis
unquestionable offers a suitable approach to adapt their current ser-
vice life cycles. The contributions offer a reliable foundation for the
future development of Cloud Computing in general.

In future IT Clouds, approaches to enable real-time service provi-
sion will gather a growing impact. This demand will be pushed by
the growing extension of autonomous heterogeneous business pro-
cesses that are based on Cloud services. The underlying service com-
position mechanisms will be based on adaptation patterns relying on
quality metrics. The monitoring and prediction of service quality in
Cloud Computing will become a major issue due to the increase of

184 conclusions

new Cloud layers, decentralisation, and deployment dynamic. This
induces the demand for techniques to correlate monitoring data and
utilisation predictions from different sources in differing formats.

On the other hand, there will be a rising demand for service con-
sumers to adequately monitor their SLA. For accurate cost predictions,
the measuring of service quality and the prediction of expectable ser-
vice quality for heterogeneous service-oriented systems has to work
closer together. This includes the demand to correlate short-term and
long-term predictions on both sides, service consumers and providers.

Data management on large scale will demand new approaches,
when federated in the Cloud, specifically when certain security poli-
cies should be considered (e.g., geographical distribution, competitor
sealing).

For all these presented future challenges, the evolved delivery frame-
work offers a serious basis for service provision.

B I B L I O G R A P H Y

Afzal, A., McGough, A. S., and Darlington, J. (2008). Capacity plan-
ning and scheduling in grid computing environments. Future Gen-
eration Computer Systems, 24:404–414. ACM ID: 1350010. (Cited on
page 57.)

Almasi, G. S. and Gottlieb, A. (1989). Highly Parallel Computing.
Benjamin-Cummings, Redwood City, CA. (Cited on page 33.)

Amazon (2011). AWS elastic beanstalk.
http://aws.amazon.com/elasticbeanstalk/. (Cited on page 7.)

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann,
F., Liu, K., Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weer-
awarana, S. (2003). BPEL4WS, Business Process Execution Language
for Web Services Version 1.1. IBM, BEA Systems, Microsoft, SAP AG,
Siebel Systems. (Cited on page 30.)

Andrzejak, A., Arlitt, M., and Rolia, J. (2002). Bounding the resource
savings of utility computing models. Technical report, Hewlett-
Packard Laboratories. (Cited on pages 26 and 33.)

APM Group, TSO, and Cabinet Office (2011). ITIL. http://www.itil-
officialsite.com. (Cited on pages 34 and 91.)

Appleby, K., Fakhouri, S., Fong, L., Goldszmidt, G., Kalantar, M., Kr-
ishnakumar, S., Pazel, D. P., Pershing, J., and Rochwerger, B. (2001).
Oceano-SLA based management of a computing utility. In 2001
IEEE/IFIP International Symposium on Integrated Network Management
Proceedings, pages 855–868. IEEE. (Cited on page 53.)

Arsanjani, A., Zhang, L.-J., Ellis, M., Allam, A., and Channabasavaiah,
K. (2007). S3: A service-oriented reference architecture. IT Profes-
sional, 9(3):10–17. (Cited on pages x, 51, and 52.)

Bader, D. A. and Pennington, R. (2001). Cluster computing: Applica-
tions. The International Journal of High Performance Computing, pages
181–185. (Cited on page 33.)

Ball, P. (2001). Introduction to discrete event simulation.
http://masters.donntu.edu.ua/2006/kita/kondrakhin/library/art6.htm.
(Cited on page 139.)

185

186 bibliography

Banks, J. (1998). Handbook of Simulation: Principles, Methodology, Ad-
vances, Applications, and Practice: Modelling, Estimation and Control.
John Wiley & Sons, 1. auflage edition. (Cited on page 138.)

Banks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M. (2009). Discrete-
Event System Simulation. Prentice Hall, 5 edition. (Cited on
page 139.)

Batelle, J. and O’Reilly, T. (2004). Opening welcome, the state
of the internet industry, web 2.0 conference, san francisco.
http://itc.conversationsnetwork.org/shows/detail270.html. (Cited
on page 9.)

Beard, H. (2008). Cloud Computing Best Practices for Managing and Mea-
suring Processes for On-Demand Computing, Applications and Data Cen-
ters in the Cloud with Slas. Lulu.com. (Cited on page 34.)

Bi, J., Zhu, Z., Tian, R., and Wang, Q. (2010). Dynamic provision-
ing modeling for virtualized multi-tier applications in cloud data
center. In Cloud Computing (CLOUD), 2010 IEEE 3rd International
Conference on, pages 370–377. (Cited on page 58.)

Bieberstein, N. (2006). Service-oriented architecture compass: business
value, planning, and enterprise roadmap. FT Press. (Cited on page 29.)

Bitran, G. and Caldentey, R. (2003). An overview of pricing models
for revenue management. Manufacturing & Service Operations Man-
agement, 5(3):203–229. (Cited on page 27.)

Bodendorf, F. and Schobert, A. (2003). Integration von web-services
in ein kundenportal. HMD - Praxis Wirtschaftsinform., 234. (Cited
on pages 37 and 170.)

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M.,
Ferris, C., and Orchard, D. (2004). Web services architecture.
http://www.w3.org/TR/ws-arch/. (Cited on pages 29 and 43.)

Bourke, T. (2001). Server load balancing - help for network administrators.
O’Reilly. (Cited on page 34.)

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E., and Yergeau,
F. (2012). Extensible markup language (XML) 1.0 (Fifth edition).
http://www.w3.org/TR/xml/. (Cited on page 122.)

Britannica Online Encyclopedia (2011). public utility.
http://www.britannica.com/EBchecked/topic/482523/public-
utility. (Cited on page 24.)

bibliography 187

Bunker, G. and Thomson, D. (2006). Delivering Utility Computing:
Business-driven IT Optimization. John Wiley & Sons. (Cited on
page 26.)

Buyya, R., Broberg, J., and Goscinski, A. M. (2011). Cloud Comput-
ing: Principles and Paradigms. John Wiley & Sons, 1. auflage edition.
(Cited on pages 65, 68, 69, and 75.)

Buyya, R., Ranjan, R., and Calheiros, R. N. (2009). Modeling and simu-
lation of scalable cloud computing environments and the CloudSim
toolkit: Challenges and opportunities. In Proceedings of the 7th High
Performance Computing and Simulation Conference, Leipzig, Germany.
IEEE Press, New York, USA. (Cited on page 140.)

Buyya, R., Ranjan, R., and Calheiros, R. N. (2010). InterCloud: utility-
oriented federation of cloud computing environments for scaling
of application services. In Hsu, C., Yang, L., Park, J., and Yeo, S.,
editors, Algorithms and Architectures for Parallel Processing, Pt 1, Pro-
ceedings, volume 6081, pages 13–31. Springer-Verlag Berlin, Berlin.
WOS:000279552800002. (Cited on pages x and 40.)

Calheiros, R. N., Ranjan, R., Beloglazov, A., Rose, C. A. F. D., and
Buyya, R. (2011a). CloudSim: a toolkit for modeling and simula-
tion of cloud computing environments and evaluation of resource
provisioning algorithms. Software - Practice and Experience, 41(1):23–
50. (Cited on pages xi, 140, 160, and 162.)

Calheiros, R. N., Ranjan, R., and Buyya, R. (2011b). Virtual machine
provisioning based on analytical performance and QoS in cloud
computing environments. In Gao, G. R. and Tseng, Y.-C., editors,
ICPP, pages 295–304. IEEE. (Cited on page 165.)

Castane, G. G., Nunez, A., Filgueira, R., and Carretero, J. (2012). Di-
mensioning scientific computing systems to improve performance
of map-reduce based applications. Procedia Computer Science, 9:226–
235. (Cited on page 141.)

Chalmers, A. F. (1999). What Is This Thing Called Science? Open Uni-
versity Press, 3rd edition. (Cited on page 24.)

Chee, B. J. and Franklin, C. J. (2010). Cloud Computing: Technologies and
Strategies of the Ubiquitous Data Center. CRC Press, 1 edition. (Cited
on page 26.)

Chen, P. P.-S. (1976). The entity-relationship model - toward a uni-
fied view of data. ACM Trans. Database Syst., 1(1):9–36. (Cited on
pages 117 and 119.)

188 bibliography

Chou, T. (2011). Introduction to Cloud Computing. Active Book Press,
LLC. (Cited on page 26.)

Citrix (2011). Xen hypervisor. http://www.xen.org/. (Cited on
page 31.)

Clarke, R. J. (2005). Research methodologies. (Cited on page 21.)

Cohen, J., Darlington, J., and Lee, W. (2008). Payment and negotiation
for the next generation grid and web. Concurrency and Computation:
Practice and Experience, 20(3):239–251. (Cited on pages 28 and 51.)

Cohen, J., Lee, W., Darlington, J., and McGough, A. S. (2006). A
service-oriented utility grid architecture utilising pay-per-use re-
sources. In First International Conference on Communication System
Software and Middleware, 2006. Comsware 2006. IEEE. (Cited on
page 51.)

Cooper, R. B. (1981). Introduction to Queuing Theory. George Washing-
ton University, 2nd edition. (Cited on page 138.)

D Souza, D. F. and Wills, A. C. (1998). Objects, Components, and Frame-
works with UML: The Catalysis(SM) Approach. Addison-Wesley Pro-
fessional, 1 edition. (Cited on page 29.)

Darlington, J., Cohen, J., and Lee, W. (2006). An architecture for a
next-generation internet based on web services and utility comput-
ing. In 15th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2006. WETICE ’06, pages
169–174. IEEE. (Cited on page 51.)

Dimitrakos, T., Gaeta, M., Ritrovato, P., Serhan, B., Wesner, S., and
Wulf, K. (2002). Grid based application service provision. Oxford,
UK. (Cited on pages x, 49, and 50.)

Dimitrakos, T., Randal, D. M., Yuan, F., Gaeta, M., Laria, G., Ritrovato,
P., Serhan, B., Wesner, S., and Wulf, K. (2003). An emerging archi-
tecture enabling grid based application service provision. In EDOC,
pages 240–251. IEEE Computer Society. (Cited on page 49.)

Dobson, G. and Sanchez-Macian, A. (2006). Towards unified
QoS/SLA ontologies. In IEEE Services Computing Workshops, 2006.
SCW ’06, pages 169–174. IEEE. (Cited on page 55.)

Dodig-Crnkovic, G. (2002). Scientific methods in computer science.
In Conference for the Promotion of Research in IT at New Universities
and at University Colleges in Sweden. (Cited on page 19.)

bibliography 189

Dodig-Crnkovic, G. (2003). Shifting the paradigm of philosophy of
science: Philosophy of information and a new renaissance. Minds
and Machines, 13(4):521–536. 10.1023/A:1026248701090. (Cited on
page 22.)

Dodig-Crnkovic, G. (2004). Theory of science. Technical Report
MRTC report ISSN 1404-3041 ISRN MDH-MRTC-64/2001-1-SE,
Mälardalen Real-Time Research Centre, Mälardalen University.
(Cited on page 23.)

Dodig-Crnkovic, G. (2009). Theory of science 1. (Cited on page 24.)

Ellram, L. M. (1995). Total cost of ownership: an analysis approach for
purchasing. International Journal of Physical Distribution & Logistics
Management, 25(8):4–23. (Cited on page 10.)

Elsaesser, W. (2006). ITIL einfuehren und umsetzen: Leitfaden fuer ef-
fizientes IT-Management durch Prozessorientierung. Carl Hanser Ver-
lag GmbH & CO. KG, 2., erweiterte auflage edition. (Cited on
page 91.)

Erl, T. (2005). Service-Oriented Architecture (SOA): Concepts, Technology,
and Design. Prentice Hall. (Cited on page 29.)

Erl, T. (2007). SOA Principles of Service Design. Prentice Hall Interna-
tional, 1 edition. (Cited on page 117.)

Fitzsimmons, J. A. and Fitzsimmons, M. J. (2006). Service Manage-
ment: Operations, Strategy, Information Technology. Mcgraw-Hill Pro-
fessional, 5th ed. edition. (Cited on page 28.)

Fong, L. L., Kalantar, M., Pazel, D. P., Goldszmidt, G. S., Fakhouri,
S., and Krishnakumar, S. (2002). Dynamic resource management
in an eUtility. In Network Operations and Management Symposium,
2002. NOMS 2002. 2002 IEEE/IFIP, pages 727–740. IEEE. (Cited on
page 53.)

Foster, I., Gannon, D., Kishimoto, H., and Von Reich, J. (2004). Open
grid services architecture use cases. Information Document. (Cited
on pages 48, 81, 83, 85, and 86.)

Foster, I. and Kesselman, C. (2003). The Grid 2, Second Edition: Blueprint
for a New Computing Infrastructure. Morgan Kaufmann, 2 edition.
(Cited on pages 33 and 48.)

Foster, I., Kishimoto, H., Savva, A., Berry, D., Djaoui, A., Grimshaw,
A., Horn, B., Maciel, F., Siebenlist, F., Subramaniam, R., Treadwell,
J., and Von Reich, J. (2005). The open grid services architecture, ver-
sion 1.0. Informational Document. (Cited on pages x, 48, and 49.)

190 bibliography

Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud computing and
grid computing 360-degree compared. In Grid Computing Environ-
ments Workshop, 2008. GCE’08, pages 1–10. (Cited on page 26.)

Freitas, A. L., Parlavantzas, N., and Pazat, J.-L. (2010). A QoS assur-
ance framework for distributed infrastructures. In Proceedings of
the 3rd International Workshop on Monitoring, Adaptation and Beyond,
MONA ’10, pages 1–8. ACM ID: 1929567. (Cited on page 58.)

Garg, S. K. and Buyya, R. (2011). NetworkCloudSim: modelling paral-
lel applications in cloud simulations. In UCC, pages 105–113. IEEE
Computer Society. (Cited on page 140.)

Grayling, A. C. (1999). Philosophy 1: A Guide through the Subject. Ox-
ford University Press, USA. (Cited on pages 22 and 23.)

Greg Boss, Padma Malladi, Dennis Quan, Linda Legregni, and
Harold Hall (2007). Cloud computing. IBM DeveloperWorks. (Cited
on page 32.)

Gribble, S. D., Welsh, M., von Behren, J. R., Brewer, E. A., Culler,
D. E., Borisov, N., Czerwinski, S. E., Gummadi, R., Hill, J. R., Joseph,
A. D., Katz, R. H., Mao, Z. M., Ross, S., and Zhao, B. Y. (2001). The
ninja architecture for robust internet-scale systems and services.
Computer Networks, 35(4):473–497. (Cited on page 53.)

Groenroos, C. (2000). Service Management and Marketing: A Customer
Relationship Management Approach. Wiley & Sons, 2 edition. (Cited
on page 28.)

Haas, H. and Brown, A. (2004). Web services glossary.
http://www.w3.org/TR/ws-gloss/. (Cited on pages 29 and 73.)

Hansson, H. (2009). Research methods in CS. (Cited on page 22.)

Harris, D. (2008). Why ’Grid’ doesn’t sell.
http://www.hpcinthecloud.com/hpccloud/2008-03-
24/why_grid_doesnt_sell.html. (Cited on page 33.)

Hayes, B. (2008). Cloud computing. Communications of the ACM,
51(7):9–11. (Cited on page 32.)

Heap, D. G. (2003). Taurus - taxonomy of actual utilization of real
UNIX and windows servers. Technical report, IBM Corporation.
(Cited on page 26.)

Heckmann, B. (2007). Service provision in a utility computing envi-
ronment. In Proceedings of the Third Collaborative Research Symposium

bibliography 191

on Security, E-Learning, Internet and Networking, pages 185–198, Ply-
mouth, UK. Lulu.com. (Cited on pages 81, 105, 110, and 201.)

Heckmann, B. (2009). Service provision in an utility computing en-
vironment. Technical report, Science and Technology, Computing
and Mathematics, University of Plymouth. (Cited on pages 116,
117, and 119.)

Heckmann, B. and Phippen, A. (2010). Quantitative and qualitative
description of the consumer to provider relation in the context of
utility computing. In Proceedings of the Eighth International Network
Conference (INC 2010), pages 335–344, Heidelberg, Germany. (Cited
on pages 73, 74, 78, 95, 116, 117, 119, and 201.)

Heckmann, B., Phippen, A. D., Moore, R. C., and Wentzel, C. (2011).
Agreeing on and controlling business service levels in service-
oriented architectures. International Transactions on Systems Science
and Applications, Vol. 7(No. 3/4):173–178. (Cited on pages 75, 79,
121, 122, 124, and 201.)

Heckmann, B., Phippen, A. D., Moore, R. C., and Wentzel, C. (2012a).
Agreeing on and controlling service levels in service-oriented ar-
chitectures. In CLOSER 2012 - Proceedings of the 2nd International
Conference on Cloud Computing and Service Science, pages 267–270,
Porto, Portugal. INSTICC - Institute for Systems and Technologies
of Information, Control and Communication. (Cited on pages 75,
79, 121, 122, 124, and 201.)

Heckmann, B., Stengel, I., Phippen, A., and Turetschek, G. (2009). Util-
ity computing simulation. In ESM’2009 The 2009 European Simula-
tion and Modelling Conference, pages 175–180, Leicester, United King-
dom. EUROSIS-ETI. (Cited on pages 74, 146, and 201.)

Heckmann, B., Turetschek, G., and Phippen, A. (2008). A technology-
abstracted approach to a utility computing simulation framework.
In Proceedings of the Fourth Collaborative Research Symposium on Se-
curity, E-learning, Internet and Networking, pages 155–165, Wrexham,
UK. (Cited on pages 74 and 201.)

Heckmann, B., Zinn, M., Phippen, A. D., Moore, R. C., and Wentzel,
C. (2012b). Economic efficiency control on data centre resources
in heterogeneous cost scenarios. In ICITST-2012 Proceedings, pages
675–679, London, UK. Infonomics Society, UK. (Cited on pages 40,
94, 127, and 201.)

Hoeing, A. (2010). Orchestrating Secure Workflows for Cloud and Grid
Services. PhD thesis, Technische Universitaet Berlin, OPUS. (Cited
on pages x and 50.)

192 bibliography

Humm, B. (2008). Was ist eigentlich ein service? In Softwaretechnik-
Trends 28, pages 8–11. (Cited on page 29.)

ISACA, editor (2005). COBIT 4.0. United States of America. (Cited
on page 92.)

JBoss (2011). JBoss application server. http://www.jboss.org/. (Cited
on page 33.)

Jong, W. R. and Betti, A. (2008). The classical model of science: a
millennia-old model of scientific rationality. Synthese, 174:185–203.
(Cited on page 24.)

JTC1/SC22/WG21 (2012). ISO/IEC JTC1/SC22/WG21 - the c++
standards committee. http://www.open-std.org/jtc1/sc22/wg21/.
(Cited on page 147.)

Kertesz, A., Kecskemeti, G., and Brandic, I. (2009). An SLA-based
resource virtualization approach for on-demand service provision.
In Proceedings of the 3rd international workshop on Virtualization tech-
nologies in distributed computing, VTDC ’09, pages 27–34, New York,
NY, USA. ACM. (Cited on pages x and 41.)

Kim, H. J. and Paek, K. H. (2005). Promoting the application service
provision (ASP) model. In DEEC, pages 95–102. IEEE Computer
Society. (Cited on page 49.)

Kishimoto, H. (2003). OGSA usecase matrix. (Cited on page 48.)

Kliazovich, D., Bouvry, P., and Khan, S. (2010a). DENS: data center
energy-efficient network-aware scheduling. In Green Computing and
Communications (GreenCom), 2010 IEEE/ACM Int’l Conference on Int’l
Conference on Cyber, Physical and Social Computing (CPSCom), pages
69 –75. (Cited on page 142.)

Kliazovich, D., Bouvry, P., and Khan, S. (2010b). GreenCloud: a
packet-level simulator of energy-aware cloud computing data cen-
ters. The Journal of Supercomputing, pages 1–21. (Cited on pages xii,
142, and 143.)

Kusic, D., Kephart, J., Hanson, J., Kandasamy, N., and Jiang, G. (2008).
Power and performance management of virtualized computing en-
vironments via lookahead control. In Autonomic Computing, 2008.
ICAC ’08. International Conference on, pages 3–12. (Cited on page 58.)

Liang, Q., Chung, J.-y., Miller, S., and Ouyang, Y. (2006). Service
pattern discovery of web service mining in web service registry-
repository. In 2006 IEEE International Conference on e-Business En-

bibliography 193

gineering (ICEBE’06), pages 286–293, Shanghai, China. (Cited on
pages 99 and 115.)

Liang, Q., Miller, S., and Chung, J.-Y. (2005). Service mining for web
service composition. In Information Reuse and Integration, Conf, 2005.
IRI -2005 IEEE International Conference on., pages 470 – 475. (Cited
on pages 99 and 115.)

Liang-Jie Zhang (2007). Services Computing: Core Enabling Technology
of the Modern Services Industry. Tsinghua University Press; Springer,
Beijing; Berlin; New York. (Cited on pages x, 3, 28, 34, 47, 48, 65,
69, and 180.)

Liddell, H. G. and Scott, R. (2011). Philosophy, a greek-english lexicon,
perseus. http://www.perseus.tufts.edu. (Cited on page 22.)

Lim, S.-H., Sharma, B., Nam, G., Kim, E. K., and Das, C. (2009). MD-
CSim: a multi-tier data center simulation, platform. In Cluster Com-
puting and Workshops, 2009. CLUSTER ’09. IEEE International Confer-
ence on, pages 1–9. (Cited on page 57.)

Liu, L., Wang, H., Liu, X., Jin, X., He, W. B., Wang, Q. B., and Chen,
Y. (2009). GreenCloud: a new architecture for green data center. In
Proceedings of the 6th international conference industry session on Auto-
nomic computing and communications industry session, ICAC-INDST
’09, pages 29–38, New York, NY, USA. ACM. (Cited on pages x, 41,
and 42.)

Machiraju, V., Rolia, J., and Van Moorsel, A. (2002). Quality of busi-
ness driven service composition and utility computing. COMPUT-
ING, SOFTWARE TECHNOLOGY LABORATORY, HP LABORATO-
RIES PALO ALTO. (Cited on page 53.)

MacLaren, J., Newhouse, S., Haupt, T., Keahey, K., and Lee, W. (2006).
Grid economy use cases. (Cited on page 48.)

Maglaras, C. and Meissner, J. (2006). Dynamic pricing strategies
for multi-product revenue management problems. Manufacturing
& Service Operations Management (MSOM), 8(2):136–148. (Cited on
page 27.)

Marks, E. A. and Lozano, B. (2010). Executive’s Guide to Cloud Comput-
ing. Wiley, 1 edition. (Cited on pages x, 9, 32, 41, and 42.)

Maximilien, E. M. and Singh, M. P. (2005). Toward web services inter-
action styles. In 2005 IEEE International Conference on Services Com-
puting, volume 1, pages 147– 154 vol.1. IEEE. (Cited on page 29.)

194 bibliography

McGough, A. S., Lee, W., and Darlington, J. (2006). ICENI II. In
First International Conference on Communication System Software and
Middleware, 2006. Comsware 2006. IEEE. (Cited on pages x and 51.)

Mell, P. and Grance, T. (2010). The NIST definition of cloud comput-
ing. (Cited on pages 30, 31, and 32.)

Mendoza, A. (2007). Utility Computing Technologies, Standards, and
Strategies. Artech House Inc. (Cited on pages x, 26, 43, 44, 65,
66, 68, 70, 71, and 180.)

Microsoft (2011). Windows azure platform.
http://www.microsoft.com/windowsazure/. (Cited on page 7.)

Monroe, K. B. (2003). Pricing. McGraw-Hill/Irwin, Boston, Mass., 3.
ed., internat. ed edition. (Cited on page 27.)

Nathuji, R., Kansal, A., and Ghaffarkhah, A. (2010). Q-clouds: man-
aging performance interference effects for QoS-aware clouds. In
Morin, C. and Muller, G., editors, EuroSys, pages 237–250. ACM.
(Cited on pages 55 and 56.)

Natis, Y. V., Pezzini, M., Iijima, K., and Favata, R. (2008).
Magic quadrant for enterprise application servers, 2Q08.
http://www.gartner.com/id=655409. (Cited on page 34.)

Neel, D. (2002). The utility computing promise.
http://www.infoworld.com/d/networking/utility-computing-
promise-807. (Cited on page 26.)

Nunez, A., Castane, G., Vazquez-Poletti, J., Caminero, A., Carretero, J.,
and Llorente, I. (2011a). Design of a flexible and scalable hypervisor
module for simulating cloud computing environments. In 2011 In-
ternational Symposium on Performance Evaluation of Computer Telecom-
munication Systems (SPECTS), pages 265 –270. (Cited on page 141.)

Nunez, A., Vazquez-Poletti, J., Caminero, A., Carretero, J., and
Llorente, I. (2011b). Design of a new cloud computing simula-
tion platform. In Murgante, B., Gervasi, O., Iglesias, A., Taniar,
D., and Apduhan, B., editors, Computational Science and Its Applica-
tions - ICCSA 2011, volume 6784 of Lecture Notes in Computer Science,
pages 582–593. Springer Berlin / Heidelberg. (Cited on page 141.)

Nunez, A., Vazquez-Poletti, J., Caminero, A., Castane, G., Carretero,
J., and Llorente, I. (2012). iCanCloud: a flexible and scalable cloud
infrastructure simulator. Journal of Grid Computing, 10(1):185–209.
(Cited on pages xii, 141, and 142.)

bibliography 195

Oasis (2006). Reference model for service oriented architecture. Public
Review Draft 2. (Cited on page 29.)

OMG, O. M. G. (2011). Unified modeling language.
http://www.omg.org/spec/UML/. (Cited on page 121.)

Oracle (2011). GlassFish application server. http://glassfish.java.net/.
(Cited on page 33.)

Ostermann, S., Plankensteiner, K., and Prodan, R. (2011a). Using a
new event-based simulation framework for investigating resource
provisioning in clouds. Scientific Programming, 19(2-3):161–178.
(Cited on page 141.)

Ostermann, S., Plankensteiner, K., Prodan, R., and Fahringer, T.
(2011b). GroudSim: an event-based simulation framework for com-
putational grids and clouds. In Euro-Par 2010 Parallel Process-
ing Workshops - HeteroPar, HPCC, HiBB, CoreGrid, UCHPC, HPCF,
PROPER, CCPI, VHPC, Ischia, Italy, August 31-September 3, 2010, Re-
vised Selected Papers, volume 6586 of Lecture Notes in Computer Sci-
ence, pages 305–313. Springer. (Cited on page 141.)

Osterwalder, A. (2004). The Business Model Ontology - a proposition
in a design science approach. PhD thesis, University of Lausanne,
Switzerland. (Cited on page 25.)

Papazoglou, M. P. (2003). Service-oriented computing: Concepts,
characteristics and directions. In 4th International Conference on Web
Information Systems Engineering (WISE’03), pages 3–12. (Cited on
page 29.)

Pazel, D. P., Eilam, T., Fong, L. L., Kalantar, M., Appleby, K., and Gold-
szmidt, G. (2002). Neptune: A dynamic resource allocation and
planning system for a cluster computing utility. In 2nd IEEE/ACM
International Symposium on Cluster Computing and the Grid, 2002,
pages 57–57. IEEE. (Cited on page 53.)

Peoples, C., Parr, G., and McClean, S. (2011). Energy-aware data cen-
tre management. In Communications (NCC), 2011 National Conference
on, pages 1–5. (Cited on page 58.)

Phan, T. and Li, W.-S. (2010). Vertical load distribution for cloud
computing via multiple implementation options. In Furht, B. and
Escalante, A., editors, Handbook of Cloud Computing, pages 277–308.
Springer US. 10.1007/978-1-4419-6524-0_12. (Cited on pages x, 44,
and 45.)

196 bibliography

Postel, J. (1981). Internet control message protocol - RFC 792.
http://tools.ietf.org/html/rfc792. (Cited on page 123.)

Ralston, A., Reilly, E. D., and Hemmendinger, D., editors (2003). En-
cyclopedia of Computer Science. Wiley, 4 edition. (Cited on pages 138

and 139.)

Rappa, M. (2003). Business models on the web.
http://digitalenterprise.org/models/models.html. (Cited on
page 26.)

Rappa, M. A. (2004). The utility business model and the future of
computing services. IBM Systems Journal, 43(1):32–42. (Cited on
pages 24 and 26.)

Roth, P. F. (1987). Discrete, continuous and combined simulation. In
Proceedings of the 19th conference on Winter simulation, WSC ’87, pages
25–29, New York, NY, USA. ACM. (Cited on page 138.)

Rust, G. (2009). Internal technical report, secco advanced GmbH,
grossostheim, germany. (Cited on pages 11 and 12.)

Salesforce.com (2011). CRM software & online CRM system.
http://www.salesforce.com. (Cited on page 8.)

Seppanen, M. and Makinen, S. (2005). Business model concepts: a
review with case illustration. In Engineering Management Conference,
2005. Proceedings. 2005 IEEE International, volume 1, pages 376– 380.
IEEE. (Cited on page 25.)

Shigang, C. and Nahrstedt, K. (1998). An overview of quality of
service routing for next-generation high-speed networks: problems
and solutions. IEEE Network, 12(6):64–79. (Cited on page 57.)

Singh, M. P. and Huhns, M. N. (2005). Service-Oriented Computing:
Semantics, Processes, Agents. Wiley Computer Publishing, New York.
(Cited on page 29.)

Smith, M. A. and Kumar, R. L. (2004). A theory of application ser-
vice provider (ASP) use from a client perspective. Information &
Management, 41(8):977–1002. (Cited on page 49.)

Sotomayor, B., Montero, R. S., Llorente, I. M., and Foster, I. T. (2009).
Virtual infrastructure management in private and hybrid clouds.
IEEE Internet Computing, 13(5):14–22. (Cited on page 46.)

Speitkamp, B. and Bichler, M. (2010). A mathematical programming
approach for server consolidation problems in virtualized data cen-
ters. Services Computing, IEEE Transactions on, 3(4):266–278. (Cited
on page 58.)

bibliography 197

Stanoevska-Slabeva, K., Wozniak, T., and Ristol, S., editors (2009).
Grid and Cloud Computing: A Business Perspective on Technology and
Applications. Springer, 1 edition. (Cited on page 33.)

Stantchev, V. and Schroepfer, C. (2009). Negotiating and enforcing
QoS and SLAs in grid and cloud computing. In Abdennadher, N.
and Petcu, D., editors, Advances in Grid and Pervasive Computing,
volume 5529, pages 25–35. Springer Berlin Heidelberg, Berlin, Hei-
delberg. (Cited on page 56.)

Treadwell, J. (2005). Open grid services architecture glossary of terms.
http://www.ggf.org/documents/GFD.44.pdf. (Cited on pages 86

and 88.)

Urdaneta, G., Pierre, G., and van Steen, M. (2009). Wikipedia
workload analysis for decentralized hosting. Computer Networks,
53(11):1830–1845. (Cited on page 165.)

Urgaonkar, B., Pacifici, G., Shenoy, P. J., Spreitzer, M., and Tantawi,
A. N. (2005a). An analytical model for multi-tier internet services
and its applications. page 291. ACM Press. (Cited on page 52.)

Urgaonkar, B., Shenoy, P. J., Chandra, A., and Goyal, P. (2005b). Dy-
namic provisioning of multi-tier internet applications. pages 217–
228. IEEE. (Cited on pages xi, 52, and 53.)

Van Moorsel, A. (2001). Metrics for the internet age: Quality of experi-
ence and quality of business. 5TH PERFORMABILITY WORKSHOP.
(Cited on pages xi, 53, and 55.)

Varga, A. (2001). The OMNeT++ discrete event simulation system. In
ESM’2001 Proceedings of the 15th European Simulation Multiconference,
Prague, Czech Republic. (Cited on page 147.)

Varga, A. and Hornig, R. (2008). An overview of the OMNeT++ sim-
ulation environment. In Molnar, S., Heath, J., Dalle, O., and Wainer,
G. A., editors, SimuTools, page 60. ICST. (Cited on page 147.)

Villegas, D. and Sadjadi, S. M. (2011). Mapping non-functional re-
quirements to cloud applications. In SEKE, pages 527–532. Knowl-
edge Systems Institute Graduate School. (Cited on pages x and 46.)

VMware (2011a). Cloud foundry. http://cloudfoundry.org/. (Cited
on page 7.)

VMware (2011b). VMware virtualization.
http://www.vmware.com/virtualization/. (Cited on page 31.)

198 bibliography

von Behren, J. R., Brewer, E. A., Borisov, N., Chen, M., Welsh, M.,
MacDonald, J., Lau, J., and Culler, D. E. (2002). Ninja: A frame-
work for network services. In ATEC ’02: Proceedings of the General
Track of the annual conference on USENIX Annual Technical Conference,
pages 87–102, Berkeley, CA, USA. USENIX Association. (Cited on
page 53.)

Von Reich, J. (2004). Open grid services architecture: Second tier use
cases. Draft. (Cited on pages 48, 86, 88, and 90.)

W3C (2007). SOAP specifications. http://www.w3.org/TR/soap/.
(Cited on page 43.)

Wang, Y. and Wang, X. (2010). Power optimization with performance
assurance for multi-tier applications in virtualized data centers. In
Parallel Processing Workshops (ICPPW), 2010 39th International Confer-
ence on, pages 512–519. (Cited on page 58.)

Weiss, A. (2007). Computing in the clouds. netWorker, 11(4):16–25.
(Cited on page 32.)

Welsh, M. and Culler, D. E. (2003). Adaptive overload control for busy
internet servers. In USENIX Symposium on Internet Technologies and
Systems. (Cited on page 53.)

Wesner, S., Serhan, B., Dimitrakos, T., Randal, D. M., Ritrovato, P., and
Laria, G. (2004). Overview of an architecture enabling grid based
application service provision. In Dikaiakos, M. D., editor, European
Across Grids Conference, volume 3165 of Lecture Notes in Computer
Science, pages 113–118. Springer. (Cited on page 49.)

West, D. B. (1999). Introduction to Graph Theory. Prentice Hall, 2nd ed.
edition. (Cited on page 12.)

Wickremasinghe, B., Calheiros, R. N., and Buyya, R. (2010). CloudAn-
alyst: a CloudSim-Based visual modeller for analysing cloud com-
puting environments and applications. In Proceedings of the 24th
International Conference on Advanced Information Networking and Ap-
plications, pages 446–452, Perth, Australia. IEEE Computer Society.
(Cited on page 140.)

Winter, S. (2000). Quantitative vs. quali-
tative methoden. http://imihome.imi.uni-
karlsruhe.de/nquantitative_vs_qualitative_methoden_b.html.
(Cited on page 21.)

Wolski, R., Spring, N. T., and Hayes, J. (1999). The network weather
service: a distributed resource performance forecasting service for

bibliography 199

metacomputing. Future Generation Computer Systems, 15(5-6):757–
768. (Cited on page 57.)

Xipeng, X. and Ni, L. M. (1999). Internet QoS: a big picture. IEEE
Network, 13(2):8–18. (Cited on page 57.)

Yeo, C. S., de Assuncao, M. D., Yu, J., Sulistio, A., Venugopal, S.,
Placek, M., and Buyya, R. (2006). Utility computing and global
grids. cs/0605056. (Cited on page 26.)

Zeng, L., Benatallah, B., Ngu, A. H., Dumas, M., Kalagnanam, J., and
Chang, H. (2004). QoS-aware middleware for web services com-
position. IEEE Transactions on Software Engineering, 30(5):311–327.
(Cited on page 57.)

Zimmermann, H. (1980). OSI reference model – the ISO model of
architecture for open systems interconnection. IEEE Transactions on
Communications, 28(4):425– 432. (Cited on page 11.)

P U B L I C AT I O N S

a. Agreeing on and Controlling Business Service Levels in Service-
Oriented Architectures,
(Heckmann et al., 2011);

b. Agreeing on and Controlling Service Levels in Service-Oriented
Architectures,
(Heckmann et al., 2012a);

c. A Technology-Abstracted Approach to a Utility Computing Sim-
ulation Framework,
(Heckmann et al., 2008);

d. Economic Efficiency Control on Data Centre Resources in Het-
erogeneous Cost Scenarios,
Heckmann et al. (2012b);

e. Quantitative and Qualitative Description of the Consumer to
Provider Relation in the Context of Utility Computing,
(Heckmann and Phippen, 2010);

f. Service Provision in an Utility Computing Environment,
(Heckmann, 2007);

g. Utility Computing Simulation,
(Heckmann et al., 2009).

201

s i w n . o r g . u k

Agreeing on and Controlling Business Service
Levels in Service-Oriented Architectures

B. HECKMANN a, A. D. PHIPPEN b, R. MOORE a and C. WENTZEL a

a University of Applied Sciences Darmstadt, Germany
b University of Plymouth, Great Britain

Abstract: This paper introduces Business Service Levels (BSLs) as a generalised concept to agree on
feasibility and workload of business processes hosted in service-oriented architectures. BSLs loosen
the coupling between technical service provision and business service consumption by offering an
alternative to technical service level agreements. To controll the BSL compliance at runtime an tech-
nical approach is introduced and implemented as proof-of-concept. It retrieves state or load informa-
tion from a technical monitoring system and technical topology information from a CMDB. Based
on those, this component estimates a business process’s feasibility and workload. To maintain the
contracted BSLs it actively controlls the request flow towards the services.

Keywords: availability, business, monitoring, reliability, services.

1. Introduction

State of the art management of service levels in service-oriented architectures aims to track and keep
certain levels of technical measurements. These objectives are formalising as service level agreements
(SLAs) consisting of technical thresholds, corresponding actions to keep them and penalties when
failing.1

From a business perspective, feasibility and workload of business processes are the only relevant
measurements. In this paper the workload of a business process reflects the relation of planned to ac-
tual workflow actions in a certain time frame, whereby it is estimated that all actions considered rely
on IT services to be conducted. Accordingly the feasibility of a process predicts the availability of
the underlying IT resources for a certain time frame and includes its workload state. This paper intro-
duces a new abstraction layer in order to agree on the feasibility and workload of a business process
instead of technical thresholds of the underlying technology. This layer is called the Business Service
Level (BSL). BSLs establish a black box around service capacity and technical implementation, thus
loosening the coupling between technical service provision and business service consumption on the
level of service agreements.

This paper introduces Business Service Levels and offers an approach to agree on and keep them
from a provider perspective.

2. Background

Starting from the business perspective, the feasibility of business processes is essential for economi-
cal success. But not only is the state of feasibility of interest, but also the workload of a process, as

1in the context of ITIL

sai: itssa.2011.12.041 ISSN 1751-1461 (print) ISSN 1751-147X (cd-rom)
Copyright © 2011 Systemics and Informatics World Network. All rights reserved.

 International Transactions on Systems Science and Applications
 Volume 7 Number 3/4 December 2011 pp. 173-178

certain workloads may reach critical technical or organisational thresholds. From the perspective of
technical operations, offering such state information for business processes based on service-oriented
architectures, can become a complex challenge. This complexity arises from highly meshed service
cascades and redundant alternate service offers (e.g., for load balancing). Committing to technical
thresholds in classical SLAs unnecessarily restricts both business and technical operations. The in-
troduction of the BSL as a new level of service agreement loosens this coupling.

In this context the research objectives of this paper are as follows:

• Identify qualified technical indicators that clearly relate to the feasibility or workload of the
modeled business process as basis for Business Service Level Agreements (BSLA).

• Provide a sufficient description that represents the indicators identified for BSLAs.
• Introduce a technical approach to monitor and enforce BSLAs during technical operations.

3. Related Work

Related works mainly address technical perspectives on service levels (SL) in service-oriented archi-
tectures (SOA). Starting with the IT architecture perspective, publications target SL description in
the context of performance modelling [1], SLA-driven development [2] and dependability throughout
the life cycle [3].

The main focus within the IT architecture perspective is SL operations management. The most
common approach for operations management could be described as distribute-and-enforce. In [4,5,
6,7,8] highly detailed SLAs are defined, distributed and then enforced on each member of the service
cascade. The complexity of this approach increases with the complexity of the given cascade.

Other approaches, such as [9] or this paper, decouple the complexity of SL operations manage-
ment from the complexity of the managed service cascades. The advantage of this paper’s approach
is that it is embedded in a whole life cycle concept [10,11].

Beside the IT architecture perspective, technical operations is another perspective concerned
with service levels. Technical operations focus on keeping track off certain levels of technical mea-
surements which can be grouped together under the term technical monitoring. Three types of moni-
toring can be distinguished: active, passive and agent-based [12].

Other approaches focus on the monitoring of business process workloads. This kind of monitor-
ing can be referred to under the term workflow monitoring. Its focus is on the workflow state rather
than underlying technical measurements [13]. In contrast, [14] and this paper aim to provide a non-
intrusive workflow monitoring approach combined with active SL management. This paper broadens
this approach to incorporate technical monitoring data and address general IT services based on IP
networks.

4. Research Approach

This research was conducted in cooperation with secco2 as business partner, introducing the problem
statement. The joint research aims at providing a concept to monitor the feasibility and workload
of business processes, hosted using on multi-tier IT service provision infrastructures, without active
technical monitoring. The following steps were taken to reach this goal:

1. Analyse of a typical multi-tier IT service provision infrastructure operated in the context of
our business partner.

2. Design of a generalised concept to track feasibility and workload of business process hosted
based on multi-tier infrastructures.

3. Implementation of a BSLA monitoring framework as proof-of-concept.

2secco advanced GmbH, Grossostheim, Germany

Int. Trans. on Systems Science and Applications, Vol. 7, No. 3/4, December 2011, pp. 173-178

174 Heckmann et al / Agreeing on and Controlling Business Service Levels

5. Multi-tier Infrastructure Analyses

In the context of secco, SOA infrastructures consist of seven horizontal layers, see the filled lay-
ers in Figure 1. Business processes are represented by technical workflows as entry layer. Business
functionality within these workflows is provided by the orchestration of application layer services,
such as web services. These services are hosted on the application infrastructure layer (e.g., within
database systems or application servers). All software components from upper layers are deployed
on the operating system layer, each instance running in a virtual machine on the virtualisation

layer. The virtual hardware is mapped to resources on the physical systems layer. As the final
layer, the network services connect these systems relying on resources such as routers, switches
or domain name services (DNS). Complementary to the previously described horizontal multi-tier
SOA infrastructure, there is the vertical technical monitoring layer. It collects, tracks and evaluates
technical measuring points of the given horizontal layers, such as running processes, log file analysis,
network stack availability, CPU load, RAM or storage usage.

Figure 1. Multi-tier architecture including Service Broker, Service Line and Component Category as example

To manage these complex infrastructures the following major points must be considered:

• Handling of service cascades with redundant service offers.
• Seamless integration of internal and external service providers.
• Support for dynamic coupling3 between service consumer and provider.

The technical monitoring solutions Amberpoint, Progress Actional, SOA Manager Service Manager,
Oracle Enterprise Manager SOA Management Pack and OpTier CoreFirst evaluated by [15] do not
offer sufficient information to gather quantifications of failure impacts and reliable conclusions on
the feasibility of the implemented business processes in the given SOA infrastructures. Specifically

3intermediate logic that changes the invocation target of a service request at runtime

Int. Trans. on Systems Science and Applications, Vol. 7, No. 3/4, December 2011, pp. 173-178

 Heckmann et al / Agreeing on and Controlling Business Service Levels 175

the analysis of the actual feasibility of a business process in scenarios with redundant service offers
fails.

6. Solution Design

To agree on feasibility and workload of business processes this paper proposes Business Service
Level Agreements as abstraction layer to ease the definition of the level of service between consumer
and provider. The core of a BSLA is the description of the expected usage behaviour. It is optionally
enriched by the declaration of maintenance windows, maximum downtimes, fines, prices or other
service level attributes. For the description of the usage behaviour this paper proposes the use of
Usage Patterns [10]. Usage Patterns address the description of the quantitative consumer-provider-
relation in terms of request frequency and complexity. Applying BSLA to contract on service offers
provides the starting point for business process feasibility and workload analyses by specifying the
contracted usage.

In opposite to the contracted usage, the monitored usage reflects the current request amount and
resource utilisation within the IT infrastructure. The business process’s workload is then determined
by comparing its contracted and monitored usage, assuming all demanded infrastructure components
are technically available. To enable monitoring of the request amount this paper proposes the use of a
centralised request routing component, named Service Broker [16] (see Figure 1). The Service Broker
provides a measuring point for request amounts per business process, which represent the process’s
workload, taking the contracted usage as reference. The business process’s feasibility is lead back
from its workload combined with information about the technical availability of all infrastructure
components hosting the process.

The aggregation of technical monitoring information in service cascades hosting business pro-
cesses is addressed by the topology graph. The topology graph is introduced by this paper to reflect
the functional dependencies between the components in an IT infrastructure. To build the topology
graph infrastructure components can be retrieved from a CMDB4, if available. To represent redundant
service offers within a topology graph service lines are introduced. A service line is a logical group
of infrastructure components that are necessary to provide an application layer service. To enable the
aggregation of the resource utilisation of service line spanning resources this paper introduces the
term component category. Component categories logically group infrastructure components that pro-
vide similar functionalities (e.g., application servers, which provide the hosting of application layer
services as functionality), see Figure 1 as example.

To calculate the resource utilisation, each topology graph node is enriched with interpreted tech-
nical monitoring information. This enriched graph is introduced as availability graph in this paper.
Thereby different detail levels of monitoring data interpretation are possible:

• State-based availability
In case of state-based analyses the availability of a graph node is lead back by interpreting
state-related technical monitoring data of the represented infrastructure component, such as
ICMP ping states retrieved from a technical monitoring system. Interpretation of this data lim-
its results to two simple states: available and non-available. This variant is simpler to impose,
but is less significant when deducting the feasibility of constitutive business processes.

• Load-based availability
For load-based analyses the availability of a graph node is estimated using a comparison of its
current resource utilisation with its maximum resource capacity. Thereby the resource utilisa-
tion is calculated based on a customisable combination of load-related technical monitoring
data. This paper proposes the use of CPU load, RAM capacity and disk space. The interpreta-
tion of such load-related data enables the provision of proportional result values reflecting the

4referring to the context of ITIL

Int. Trans. on Systems Science and Applications, Vol. 7, No. 3/4, December 2011, pp. 173-178

176 Heckmann et al / Agreeing on and Controlling Business Service Levels

current availability of the represented infrastructure component (e.g., 20 % resource utilisation
of the DNS server). The administrative overhead of this variant is to be estimated as higher,
but enables a more significant deduction of the feasibility of constitutive business processes.

• Mixed-mode availability
In mixed-mode graphs the availability of a node can either be interpreted based on state or
load-related data. This variant combines both previous variants to a customisable compromise
of administration effort and feasibility deduction precision.

The Service Broker estimates a business process as feasible if in the availability graph all state-based
nodes of at least one service line are available and the resource utilisation of all load-based component
categories offer sufficient reserves to process the estimated usage. The estimated usage for a given
time frame is calculated by subtracting the monitored usage for a given business process from its
contracted usage. In strictly state-based availability graphs only the process workload is taken into
account when calculating the estimated usage, otherwise also the resource utilisation is incorporated.

The Service Broker also provides the ability for load- and/ or cost-based routing decisions at
runtime to internal or external service providers. Cost-based routing at runtime is in detail described
in [10]. Load-based decisions include the ability to drop requests to prevent overloading the underling
IT infrastructure.

7. Proof-of-Concept Implementation

As proof-of-concept an application was implemented representing the availability graph of a small
exemplary business process. Due to the specifications of the business partner a state-based availabil-
ity graph is realised. As technical monitoring system the implementation bears on the Open Source
Software Zabbix [17]. The application depends on a given XML configuration file representing the
topology graph. The given example topology graph consists of nine nodes representing two service
lines. Each node description is enriched with a reference to its Zabbix database identifier. The appli-
cation extracts the nodes’ state values from the underlying monitoring system. It autonomously de-
termines the service lines and aggregates their availability states. The validation of the determination
reliability is subject of future research.

As first outcomes, the implementation shows the ability to realise state-based availability graphs
based on technical monitoring data. It further introduces an approach to autonomously identify ser-
vice lines in topology graphs.

8. Further Work

Complementary to the proof-of-concept implementation of state-based availability graphs the proof
for load-based availability implementations is currently being developed in cooperation with another
business partner. This research also aims to include cost-based decisions at runtime or time of deploy-
ment. For highly meshed service cascades the Service Broker could rely on simulation to forecast
the business process feasibility for a certain time frame (e.g., based on [11]). It could be useful to
periodically simulate the behaviour of service cascades at runtime in short time frames. For example
the results could represent the expected resource utilisation within the next 15 minutes. The Service
Broker could take these results into account for its routing decisions. This could be especially useful
in scenarios with long running service requests.

9. Conclusions

This paper introduces Business Service Levels as new abstraction layer to agree on feasibility and
workload of business processes between business and IT management. This eliminates the need for

Int. Trans. on Systems Science and Applications, Vol. 7, No. 3/4, December 2011, pp. 173-178

 Heckmann et al / Agreeing on and Controlling Business Service Levels 177

classic service level agreements based on technical thresholds. The research objectives in this context
have been to identify qualified technical indicators that clearly relate to the feasibility and workload
of business processes, provide a sufficient description for BSLAs and introduce a technical approach
to monitor and enforce BSLAs during operations. Related works mainly address the classical techni-
cal perspectives onto service level management. To close this gap, this paper analyses a typical multi-
tier IT service provision infrastructure operated by the project’s business partner. It designes a gener-
alised concept to track feasibility and workload of business processes hosted in such infrastructures.
Concluding, a proof-of-concept implementation demonstrates the capabilities of this approach.

References

[1] P. C. Brebner, "Performance modeling for service oriented architectures", in Companion of the 30th international con-
ference on Software engineering, Leipzig, Germany, 2008, p. 953-954.

[2] V. Muthusamy and H.-A. Jacobsen, "SLA-driven distributed application development", in Proceedings of the 3rd work-
shop on Middleware for service oriented computing, Leuven, Belgium, 2008, p. 31-36.

[3] V. Stantchev and M. Malek, "Addressing Dependability throughout the SOA Life Cycle", IEEE Transactions on Ser-
vices Computing, Bd. 99, Nr. PrePrints, 2010.

[4] Y. Chen, S. Iyer, D. Milojicic, and A. Sahai, "A systematic and practical approach to generating policies from service
level objectives", in Integrated Network Management, 2009. IM âĂŹ09. IFIP/IEEE International Symposium on, 2009,
p. 89 -96.

[5] V. Muthusamy, H.-A. Jacobsen, T. Chau, A. Chan, and P. Coulthard, "SLA-driven business process management in
SOA", in Proceedings of the 2009 Conference of the Center for Advanced Studies on Collaborative Research, Ontario,
Canada, 2009, p. 86-100.

[6] Chih-Hao Hsu, Yun-Wei Liao, and Chien-Pang Kuo, "Disassembling SLAs for follow-up processes in an SOA system",
in 2008 11th International Conference on Computer and Information Technology, Khulna, Bangladesh, 2008, p. 37-42.

[7] C. Raibulet and M. Massarelli, "Managing Non-functional Aspects in SOA through SLA", in 2008 19th International
Conference on Database and Expert Systems Applications, Turin, Italy, 2008, p. 701-705.

[8] Guijun Wang u. a., "Service Level Management using QoS Monitoring, Diagnostics, and Adaptation for Networked
Enterprise Systems", in Ninth IEEE International EDOC Enterprise Computing Conference (EDOCâĂŹ05), Enschede,
The Netherlands, 2005, p. 239-250.

[9] V. Stantchev and C. Schroepfer, "Techniques for service level enforcement in web-services based systems", in Proceed-
ings of the 10th International Conference on Information Integration and Web-based Applications & Services, Linz,
Austria, 2008, p. 7-14.

[10] B. Heckmann and A. Phippen, "Quantitative and Qualitative Description of the Consumer to Provider Relation in the
Context of Utility Computing", in Proceedings of the Eighth International Network Conference (INC 2010), Heidelberg,
Germany, 2010, p. 335-344.

[11] B. Heckmann, I. Stengel, A. Phippen, and G. Turetschek, "Utility Computing Simulation", in ESMâĂŹ2009 The 2009
European Simulation and Modelling Conference, Leicester, United Kingdom, 2009, p. 175-180.

[12] A. Utlik and N. Alexeyev, "Comparative analysis of Service Level Agreement monitoring methods", in Modern Prob-
lems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2010 International Conference on,
2010, p. 346 -346.

[13] T. Ou, W. Sun, C. Guo, and J. Li, "Visualized Monitoring of Virtual Business Process for SOA", in Proceedings of the
2008 IEEE International Conference on e-Business Engineering, 2008, p. 767-770.

[14] O. Moser, F. Rosenberg, and S. Dustdar, "Non-intrusive monitoring and service adaptation for WS-BPEL", in Proceed-
ing of the 17th international conference on World Wide Web, Beijing, China, 2008, p. 815-824.

[15] G. Rust, "Internal technical report, secco advanced GmbH, Grossostheim, Germany", Juni-2009.
[16] B. Heckmann, "Service Provision in a Utility Computing Environment", in Proceedings of the Third Collaborative

Research Symposium on Security, E-Learning, Internet and Networking, Plymouth, UK, 2007, p. 185-198.
[17] A. Vladishev, "Zabbix :: An Enterprise-Class Open Source Distributed Monitoring Solution", Juli-2010. [Online]. Avail-

able: http://www.zabbix.com/. [Accessed: 21-Juli-2010].

Int. Trans. on Systems Science and Applications, Vol. 7, No. 3/4, December 2011, pp. 173-178

178 Heckmann et al / Agreeing on and Controlling Business Service Levels

AGREEING ON AND CONTROLLING SERVICE LEVELS
IN SERVICE-ORIENTED ARCHITECTURES

Benjamin Heckmann1, Andrew D. Phippen2, Ronald C. Moore1 and Christoph Wentzel1
1University of Applied Sciences Darmstadt, Haardtring 100, 64295, Darmstadt, Germany

2University of Plymouth, Drake Circus, PL4 8AA, Plymouth, U.K.
benjamin.heckmann@gmx.de

Keywords: Availability, Business Processes, Monitoring, Reliability, SOA.

Abstract: Business Service Level Agreements (BSLAs) are introduced as a generalised concept to agree on feasibility
and workload of business processes hosted in service-oriented architectures as an alternative to technical SLA.
Based on BSLAs an according approach to control feasibility at runtime is presented.

1 INTRODUCTION

In Service-oriented Architectures (SOA) Service
Level Agreements (SLAs) (Group et al., 2011) are
used to specify technical thresholds, corresponding
actions to keep them and penalties when failing. From
a business point of view, only the feasibility of busi-
ness processes is of interest for economical success.
Business processes are feasible if a given workload is
processed in a certain maximum time frame. Work-
loads of processes are the sum of all current actively
processed process instances. Determining whether a
business process based on a SOA is feasible can be
complex for highly meshed service cascades includ-
ing redundant alternate service offers (e.g., for load
balancing).

This research is conducted in cooperation with
secco1 as business partner, introducing the problem
statement. The applied research aims at providing a
concept to monitor the feasibility and workload of
business processes, hosted on multi-tier IT service
provision infrastructures for SOA services, without
the need for active technical monitoring. To elabo-
rate an solution approach, a typical multi-tier IT ser-
vice provision infrastructure operated in the context
of our business partner is analysed in section 3. A
generalised concept to track feasibility and workload
of business processes hosted based on multi-tier in-
frastructures is elaborated in section 4. In section 5,
a BSLA monitoring framework is implemented as a
proof-of-concept.

1secco advanced GmbH, Grossostheim, Germany,
http://www.seccoadvanced.de.

2 RELATED WORKS

This paper offers an approach to technically con-
verge the quality-related ontologies of service, expe-
rience, and business as introduced in (Van Moorsel,
2001; Dobson and Sanchez-Macian, 2006). Most
other authors address technical perspectives on SLA
in SOA. From the IT architecture point of view,
authors deal with SLA descriptions of performance
modelling (Brebner, 2008), SLA-driven development
(Muthusamy et al., 2009) or dependability through-
out the life cycle (Stantchev and Malek, 2010). In
operations management SLA are mostly enforced
through an distribute-and-enforce tactic. By (Hsu
et al., 2008; Raibulet and Massarelli, 2008; Chen
et al., 2009; Muthusamy and Jacobsen, 2008) highly
detailed SLAs are defined, distributed and then en-
forced on each member of a service cascade. The
complexity to manage such approaches increases with
the complexity of the given cascade. (Stantchev and
Schroepfer, 2008) decouples SLA operations man-
agement from the complexity of a service cascade.
This paper presents a similar approach and advances
it by embedding BSLA in a whole life cycle concept
(Heckmann and Phippen, 2010). Technical operations
is focused on the technical monitoring of technical re-
source thresholds. Three types can be distinguished:
active, passive and agent-based (Utlik and Alexeyev,
2010). Other authors propose the workflow monitor-
ing of business process workloads. It is focused on the
workflow state rather than underlying technical mea-
surements (Ou et al., 2008). In contrast, (Moser et al.,
2008) aims to provide a non-intrusive workflow mon-

267

itoring approach combined with active SLA manage-
ment. This paper broadens this approach to incorpo-
rate technical monitoring data and address general IT
services based on IP networks.

3 MULTI-TIER
INFRASTRUCTURE ANALYSIS

In the context of secco, SOA infrastructures consist of
7 horizontal layers, shown in Figure 1. Business pro-
cesses are represented by technical workflows acting
as service consumers on the top layer. Business func-
tionality is provided by the orchestration (Andrews
et al., 2003) of application layer services, for example
web services (Haas and Brown, 2004). These service
instances are hosted on the application infrastructure
layer (e.g., within database systems or application
servers). All software components from upper lay-
ers are deployed on the operating system layer, each
instance running in a virtual machine on the virtual in-
frastructure layer. The virtual hardware is mapped to
resources on the physical systems layer. As the final
layer, the network services connect these systems re-
lying on resources such as routers, switches or domain
name services. Complementary to the previously de-
scribed horizontal multi-tier SOA infrastructure, there
is the vertical technical monitoring layer. It evaluates
technical measuring points of the horizontal layers,
such as network availability, CPU load, memory con-
sumption or storage usage.

Analysed service cascades include redundant ser-
vice offers and the support for dynamic coupling2 be-
tween service consumer and provider should be con-
sidered. The technical monitoring solutions Amber-
point, Progress Actional, SOA Manager Service Man-
ager, Oracle Enterprise Manager SOA Management
Pack and OpTier CoreFirst do not offer sufficient in-
formation to gather quantifications of failure impacts
and reliable conclusions on the feasibility of the im-
plemented business processes in the given SOA in-
frastructures. Specifically analyses of the current fea-
sibility of business processes in scenarios with redun-
dant service offers fail due to the evaluation of secco3.

4 SOLUTION DESIGN

To agree on feasibility and workload of business pro-
cesses Business Service Level Agreements (BSLA)

2Intermediate logic that changes the invocation target of
a service request at runtime.

3Based on an internal technical report in June 2009.

are proposed as abstraction layer for the contracting
of service quality between service consumer and ser-
vice provider. BSLAs are focused on the description
of the estimated usage behaviour, extended by the
declaration of the maximum allowed response time
for service requests and can optionally be enriched by
the declaration of maintenance windows, maximum
unplanned downtimes, fines, pricing or other non-
functional properties. BSLAs are aimed at replacing
SLAs. In BSLAs the consumer’s usage behaviour is
described by Usage Patterns (Heckmann and Phip-
pen, 2010), which offer an approach for the descrip-
tion of the quantitative consumer-provider-relation in
terms of request frequency and processing complex-
ity. BSLAs enable analyses on business process feasi-
bility and workload by specifying the contracted us-
age. In opposite, the monitored usage reflects the cur-
rent request amount and resource utilisation within
IT infrastructures. The business process’s workload
is determined by comparing its contracted and mon-
itored usage, assuming all infrastructure components
are technically available. To enable monitoring of the
request amount this paper proposes the use of a cen-
tralised request routing component, named Service
Broker4 (see Figure 1). The Service Broker provides a
measuring point for request amounts per business pro-
cess, which represent the process’s workload, taking
the contracted usage as reference. The business pro-
cess’s feasibility is lead back from its workload com-
bined with information about the technical availabil-
ity of all infrastructure components hosting the pro-
cess.

The aggregation of technical monitoring informa-
tion in service cascades hosting business processes is
addressed by a topology graph. The term topology
graph is introduced to reflect the functional depen-
dencies between the components in an IT infrastruc-
ture. To build the topology graph infrastructure com-
ponents can be retrieved from a configuration man-
agement database (CMDB) (Group et al., 2011). To
represent redundant service offers within a topology
graph service lines are introduced. A service line is
a logical group of infrastructure components that are
necessary to provide an application layer service. To
aggregate resource utilisation of service line spanning
resources the term component category is introduced.
Component categories logically group infrastructure
components that provide similar functionalities (e.g.,
application servers, which provide hosting of applica-
tion layer services), see Figure 1 as example. To cal-
culate the resource utilisation, each topology graph
node is enriched with interpreted technical monitor-

4The Service Broker acts as a economical load-balancer
for cloud infrastructures (Heckmann, 2007).

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

268

Figure 1: Multi-tier architecture including service broker, service line and component category as example.

ing information. The enriched graph is introduced as
availability graph. Considered are two levels of mon-
itoring data interpretation.

In case of state-based analyses the availability of
a graph node is lead back by interpreting state-related
technical monitoring data of the represented infras-
tructure component, such as ping states5 retrieved
from a technical monitoring system. Interpretation of
this data limits results to two simple states: available
and non-available. This variant is simpler to impose,
but is less significant when deducting the feasibility of
constitutive business processes. For load-based anal-
yses the availability of a graph node is estimated com-
paring current resource utilisation with its maximum
capacity. The utilisation is calculated based on load-
related technical monitoring data like CPU load. This
enables the provision of proportional metrics reflect-
ing the current availability of the represented resource
(e.g., 20 % utilisation of a DNS server).

The Service Broker estimates a business process
as feasible if in the availability graph all state-based
nodes of at least one service line are available and
the resource utilisation of all load-based component
categories offer sufficient reserves to process the es-
timated usage. The estimated usage for a given time
frame is calculated by subtracting the monitored us-
age for a given business process from its contracted
usage. In strictly state-based availability graphs only
the process workload is taken into account when cal-
culating the estimated usage, otherwise also the re-
source utilisation is incorporated.

5 PROOF-OF-CONCEPT
IMPLEMENTATION

As proof-of-concept an application was implemented
representing the state-based availability graph of an

5Ping enables the monitoring of the technical network
interface of a remote system and is specified in the Internet
Control Message Protocol (ICMP) (Postel, 1981).

exemplary business process. For technical monitor-
ing the implementation bears on Zabbix6. The appli-
cation uses a given XML configuration file represent-
ing the topology graph. Its topology graph consists of
nine nodes representing two service lines. Each node
description is enriched with a reference to its Zabbix
database identifier. The application extracts the state
values for all nodes from the monitoring system. It
autonomously determines the service lines and aggre-
gates their availability states. As first outcomes, the
ability to realise state-based availability graphs based
on technical monitoring data is presented. The valida-
tion of the determination reliability is subject of future
research.

6 CONCLUSIONS

This paper introduces a alternate abstraction layer in
order to agree on the feasibility and workload of a
business process instead of technical thresholds of the
underlying technology as known from common SLA.
This layer is called Business Service Level Agree-
ments (BSLA) and establishes a black box around
service capacity and technical implementation, thus
loosening the coupling between technical service pro-
vision and business service consumption on the level
of service agreements. Based on the identified quali-
fied technical indicators, the paper evolves that BSLA
approach. Corresponding, an approach for the techni-
cal monitor and enforcement of BSLAs during oper-
ations is presented. Concluding, a proof-of-concept
implementation demonstrates the capabilities of these
approaches.

REFERENCES

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein,
J., Leymann, F., Liu, K., Roller, D., Smith, D.,

6http://www.zabbix.com

AGREEING�ON�AND�CONTROLLING�SERVICE�LEVELS�IN�SERVICE-ORIENTED�ARCHITECTURES

269

Thatte, S., Trickovic, I., and Weerawarana, S. (2003).
BPEL4WS, Business Process Execution Language for
Web Services Version 1.1. IBM, BEA Systems, Mi-
crosoft, SAP AG, Siebel Systems.

Brebner, P. C. (2008). Performance modeling for service
oriented architectures. In Companion of the 30th inter-
national conference on Software engineering, pages
953–954, Leipzig, Germany. ACM.

Chen, Y., Iyer, S., Milojicic, D., and Sahai, A. (2009). A
systematic and practical approach to generating poli-
cies from service level objectives. In Integrated Net-
work Management, 2009. IM ’09. IFIP/IEEE Interna-
tional Symposium on, pages 89 –96.

Dobson, G. and Sanchez-Macian, A. (2006). Towards uni-
fied QoS/SLA ontologies. In IEEE Services Com-
puting Workshops, 2006. SCW ’06, pages 169–174.
IEEE.

Group, A., TSO, and Office, C. (2011). ITIL.
http://www.itil-officialsite.com.

Haas, H. and Brown, A. (2004). Web services glossary.
http://www.w3.org/TR/ws-gloss/.

Heckmann, B. (2007). Service provision in a utility comput-
ing environment. In Proceedings of the Third Collab-
orative Research Symposium on Security, E-Learning,
Internet and Networking, pages 185–198, Plymouth,
UK. Lulu.com.

Heckmann, B. and Phippen, A. (2010). Quantitative and
qualitative description of the consumer to provider re-
lation in the context of utility computing. In Proceed-
ings of the Eighth International Network Conference
(INC 2010), pages 335–344, Heidelberg, Germany.

Hsu, C., Liao, Y., and Kuo, C. (2008). Disassembling
SLAs for follow-up processes in an SOA system.
In 2008 11th International Conference on Computer
and Information Technology, pages 37–42, Khulna,
Bangladesh.

Moser, O., Rosenberg, F., and Dustdar, S. (2008). Non-
intrusive monitoring and service adaptation for WS-
BPEL. In Proceeding of the 17th international con-
ference on World Wide Web, pages 815–824, Beijing,
China. ACM.

Muthusamy, V. and Jacobsen, H. (2008). SLA-driven dis-
tributed application development. In Proceedings of
the 3rd workshop on Middleware for service oriented
computing, pages 31–36, Leuven, Belgium. ACM.

Muthusamy, V., Jacobsen, H., Chau, T., Chan, A., and
Coulthard, P. (2009). SLA-driven business process
management in SOA. In Proceedings of the 2009 Con-
ference of the Center for Advanced Studies on Col-
laborative Research, pages 86–100, Ontario, Canada.
ACM.

Ou, T., Sun, W., Guo, C., and Li, J. (2008). Visual-
ized monitoring of virtual business process for SOA.
In Proceedings of the 2008 IEEE International Con-
ference on e-Business Engineering, pages 767–770.
IEEE Computer Society.

Postel, J. (1981). Internet control message protocol - RFC
792. http://tools.ietf.org/html/rfc792.

Raibulet, C. and Massarelli, M. (2008). Managing non-
functional aspects in SOA through SLA. In 2008 19th

International Conference on Database and Expert
Systems Applications, pages 701–705, Turin, Italy.

Stantchev, V. and Malek, M. (2010). Addressing depend-
ability throughout the SOA life cycle. IEEE Transac-
tions on Services Computing, 99(PrePrints).

Stantchev, V. and Schroepfer, C. (2008). Techniques for ser-
vice level enforcement in web-services based systems.
In Proceedings of the 10th International Conference
on Information Integration and Web-based Applica-
tions & Services, pages 7–14, Linz, Austria. ACM.

Utlik, A. and Alexeyev, N. (2010). Comparative analysis of
service level agreement monitoring methods. In Mod-
ern Problems of Radio Engineering, Telecommunica-
tions and Computer Science (TCSET), 2010 Interna-
tional Conference on, pages 346 –346.

Van Moorsel, A. (2001). Metrics for the internet age: Qual-
ity of experience and quality of business. 5th Per-
formability Workshop.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

270

A technology-abstracted approach to an
Utility Computing simulation framework

B.Heckmann1,2, A.Phippen1 and G.Turetschek1,2
1 Network Research Group, University of Plymouth, Plymouth, United Kingdom

2 aiDa Institute of Applied Informatics, University of Applied Sciences Darmstadt,
Darmstadt, Germany

email: benjamin.heckmann@gmx.de

Abstract

This paper identifies the demand for a lightweight technology-abstracted UC model for SOA
service provision. It introduces the UC models of Bunker, Mendoza and Zhang and points out
why they are not suitable for the indicated target. Afterwards the paper introduces the model
from (Heckmann, 2007). It is shown that the model and its simulation will be useful for IT
architects, operations managers as well as business managers. The introduced discrete event
simulation approach for the UC model is based on OMNeT++.

Keywords

SaaS, Cloud Computing, Utility Computing, Service-oriented Architecture, Service
Billing, Service Provision, Quality of Service, Simulation, Virtual Infrastructure

1. Introduction

1.1. Project overview

The afterwards described approach for an Utility Computing (UC) simulation
framework is part of the effort to define a technology-abstracted Utility Computing
model, that describes the minimum features a technical UC platform must provide.
This model will allow technical framework evaluations or the simulation of
provisioning resource demands and costs early during the development. In prior
works, the core of such a technology-abstracted, UC-conform, lightweight service
provisioning model was introduced in (Heckmann, 2007). This paper adds an
approach for a simulation framework based on this model.

1.2. Utility Computing

In this paper Utility Computing is defined as business model for service providers
remotely offering IT-enabled business services for Service-oriented Architectures
(SOA) (Singh, 2005) (Melzer, 2007) and charging customers per usage, according to
(Rappa, 2004). From the provider’s IT perspective UC is about service provision that
is able to scale dynamically, based on the real-time fluctuations in demand (Bunker
et al., 2006). Additionally UC service provision offers its services equipped with the
ability to charge service consumption per use (Mendoza, 2007).

From a consumer’s perspective UC is about “the reduction of IT-related operational
costs and complexity” (Shin Yeo et al., 2006). Both perspectives, provision and
consumption, have in common to target a better utilisation of generally underutilised
IT resources (IBM, 2003) on both sides. In summary, UC claims an abstract
description how IT resource utilisation, its total costs and service prices relate. Based
on this relation, UC offers the ability to dynamically adapt prices described in
associated pricing models.

1.3. A technology-abstracted Utility Computing model

For Utility Computing a key success factor is how to effectively and efficiently
deliver software systems as services (Zhang et al., 2007). Concurrently, building a
software architecture to deliver UC-based services is vastly different from designing
architectures of traditional licensed applications (Mendoza, 2007). Additionally,
Mendoza clearly states that from a perspective of independent software vendors
(ISVs) of traditional enterprise applications, little has been done to study what needs
to be changed in traditional enterprise applications to transform them into viable
applications offered as services. But in future, ISVs will want to transform their
business model to accommodate an UC model. Also Mendoza points out that, if an
ISV develops an UC-based application or transforms a traditional licensed
application to an application delivered as a service, “the application architect needs
to be aware of the attributes that make an application suitable to be delivered as a
service”. In summary, from the perspective of an ISV there is a new way of
providing software functionality, but also the question: What does a provider need to
be prepared for going down this road? Bunker and Thomson have seen this demand
also and proposed a corresponding Utility Computing Reference Model (Bunker et
al., 2006). This model aims to provide a practical framework for the introduction of
utility computing. It is based on experience gained in real-world projects. The model
of Bunker and Thomson provides an overall IT strategy sight to the provision of UC-
based services. It provides not enough details to be helpful for IT architects to design
a suitable UC architecture for a specific service provision scenario.

Figure 1: Utility Computing Reference Model by Bunker and Thomson

The UC model by Zhang, Zhang and Cai was developed from a business
management perspective and is specified as “End-to-End Services Delivery Platform
and Methodology” (Zhang et al., 2007). With that, Zhang wants to provide an as
complete as possible model for UC.

Figure 2: Layered view of a services delivery platform by Zhang

The End-to-End Services Delivery Platform description specifically aims for the
provision of SOAP-based web services and describes in detail how SOAP web
services should be provided. With its complexity the model addresses IT architects
that have to handle large SOAP web service provision projects.

Vice versa comes the UC model of Mendoza (Mendoza, 2007), which was developed
from a technological perspective. Mendoza starts his modelling with the definition of
“software utility applications” and a detailed description of attributes that compose
such UC services. Afterwards he describes a corresponding “software application
services framework” that enumerates supporting services like metering or billing,
which are essential for the implementation of UC services.

Figure 3: Conceptual Software Utility Framework by Mendoza

Like Zhang, Mendoza tries to deliver a complete model for UC. Although the model
is confined to web service provision, it is the most interesting among the previously
introduced UC models to be taken into account for IT architects. There are two
things the introduced models have in common: They are rather complex and not
clearly technology independent. And these properties are both not optimal for the
currently fast advancing IT service technologies. But as

− a usable UC model is a key success factor (Zhang et al., 2007),

− building a software architecture to deliver UC-based services is vastly
different from designing architectures of traditional licensed applications
(Mendoza, 2007),

− the application architect needs to be aware of the attributes that make an
application suitable to be delivered as a service (Mendoza, 2007) (Bunker et
al., 2006),

there is a demand for a less complex UC model in small to medium projects, that
describes what the core functions of a UC service architecture are and which is
independent from the afterwards used implementation technology. Such a
technology-abstracted Utility Computing core model was introduced in (Heckmann,
2007). In summary the model consists of eleven abstract elements, logically
grouping demanded functionalities, and three basic workflows, which describe the
minimum demanded interaction of those elements, listed below.

 Service type

Definition of a service
class

 Service instance

Instance of a service
type

 Service host

Host for service
instances

 Service
consumer

Sends service requests

 Service request

Invocation of a
service instances
including
an associated service
response
(synchronous or
asynchronous)

 Service registry

Authentication,
directory and
repository services

 Service broker

Authorization of
service requests, cost-
based routing

 Service
load-balancer

Load-based routing,
instance deployment

 Service
monitoring

Resource
consumption tracing

 Policies

Conditions for
brokering (per service
consumer), error and
event handling (per
service type) and
security conditions
(per service
consumer)

The shown elements are abstract representatives of a group of functionalities. In a
derived technical IT architecture these functional groups might be represented as
standalone components, but could also be combined in other forms. Examples for IT
architectures that show optional implementations of technical frameworks are shown
below:

Figure 4: Implementation example based on classical SOA components

Figure 5: Implementation example implemented on a P2P architecture

1.4. Usage scenarios for a UC simulation

Utility Computing is basically a rather simple concept, where costs decrease while
efficiency and effectiveness rise. But this simple message from theory misses its
proof in practice, which makes it difficult to claim its use in real world projects.
(Bunker, 2006) In prospection, the role of an IT architect will become more and
more important to projects success. They will act as bridges between today’s
disconnected business analysts, application architects and infrastructure architects.
For the IT architect’s work, “new data, which includes usage patterns, will be added
to the list of things to be considered. By looking at both functional and usage
requirements, a design for an on-demand IT infrastructure can be implemented to
eliminate problems such as underutilized resources and low return on investments.”
(Mendoza, 2007) In summary, there is a demand for an early proof of evidence in
UC-driven development projects. But usage patterns are not only relevant to IT
architects. There are other stakeholders who should take usage patterns into account,
too: operations managers and executives. For all of those a UC model simulation
could be a collective tool to work on usage patterns. A simulation could especially be
useful for UC scenarios, where we expect service consumer groups which are
strongly varying or complexly behaving in their usage patterns and in scenarios with
highly meshed services. The association between the service’s stakeholders and its
usage patterns is shown in Figure 6. The UC model and its simulation can support
this relationship at the following points:

(1) Development: IT architects

Based on the estimated usage, an IT architect can evaluate technical
frameworks based on the technology-abstracted UC model. Additionally a UC
simulation provides a way to analyse the characteristics of meshed services for
service cascade optimisations. IT architects may also use the model as a base
for design of individually developed technical frameworks.

(2) Operations: Operations managers

Based on the current usage, operations managers can use the simulation for
resource prediction in the context of service operations (CPU, memory,
storage, but also related factors like energy consumption for hardware or air
conditioning systems).

(3) Executive: Business managers

Based on a subset of the usage data, business managers can use the simulation
as a base for management decisions about IT investments (cost prediction) or
price scales (per consumer group: pay per use, dynamic discounts, SLA fines,
alternate provision locations, …).

Figure 6: Relationship between service stakeholders & service usage patterns

2. Conceptual approach for the simulation

2.1. The simulation framework OMNeT++

OMNeT++ is an Open Source, modular and component-based simulation
environment for discrete event simulations, like the simulation of communication
networks. For this purpose it is widely used within the network simulation
community. Because of its generic and flexible architecture, it has been successfully
used in other areas, like the simulation of IT systems, queuing networks, hardware
architectures and business processes as well. (omnetpp.org, 2008) It uses a flexible
topology description language that combines modules that communicate via message
passing. (Varga, 2001) (Varga, 1998) (Varga, 1997)

2.2. Technology-abstracted Utility Computing simulation framework

As a result of the mapping process from the introduced technology-abstracted UC
model into a UC simulation, the already introduced elements of the Utility
Computing model can basically be found within the simulation; see 1.2. for a short
introduction of elements and Figure 7 for an overview how they relate in the
simulation. The simulation currently provides the following functionalities:

 Resource measurement and monitoring for CPU, memory and disk space

The hardware resources simulated and monitored are: CPU, memory and disk
space. Not monitored, but taken into account, is the network traffic (bandwidth
and delay). Additionally monitored are the load-balancer and broker queues and
their message transport resource consumption. Also the overall resource
consumption for the storage network is traced. Some management events on the
hosts and corresponding instances are monitored as well.

 Message billing to service consumers (Service Broker)

To each request response a bill based on the processing sites CPU, memory and
storage costs gets attached. The consumption of these resources during
processing of the request is billed, and it is possible to add additional per site
and per consumer margins.

 Message routing by site costs (Service Broker)

Messages get routed to a site with enough resources to process the request and
the least costs for processing.

 Message routing by resource demand (Service Load-Balancer)

Messages are routed by a site’s load-balancer to a host with enough resources,
whereas hosts with already deployed instances are preferred.

 Message queuing (Service Broker & Service Load-Balancer)

Messages are temporarily stored within the service broker or service load-
balancer when not enough resources for their processing are present. They are
recalled from queue after a certain scheduling time and entered again in the
scheduling sequence of either the service broker or the service load-balancer. In
doing so the queuing consumes resources in the system, and if the system
balancer runs out off resources, incoming messages are being dropped.

Figure 7: Utility Computing simulation overview

3. First outcomes of the simulation framework tests

First tests of the simulation have shown that it is possible to simulate all aspects of
the formerly introduced UC model. The most complex scenario currently tested was
based on 48 consumer groups, each sending a single request of the same service type

that includes two subrequests to independent external service providers.
Additionally, one of the subrequests also invokes another subrequest to a service
type provided by the original service provider for the initial request. This request
cascade is illustrated in the Figure below.

Figure 8: Service request example

1) Initial service request

2) Forwarding to the most cost-
effective site with free
resources

3) Forwarding to a free
resource

4) Invocation of the first
subrequest

5) Invocation of the second
subrequest

6) Forwarding of the first
subrequest to subrequest
proxy

7) Forwarding of the second
subrequest to subrequest
proxy

8) Forwarding of the first
subrequest to a suitable
service provider

9) Forwarding of the second
subrequest to a suitable
service provider

10) Invocation of the third
subrequest

11) Forwarding to the most cost-
effective site with free
resources

12) Forwarding to a free
resource

As a result of each simulation run several values have been recorded. For all network
elements CPU, memory and storage load are recorded. Additionally, for service
brokers and load-balancers the queue length and outstanding messages and

subrequests are counted. As an example, Figure 9 shows the brokers CPU load, the
outstanding messages forwarded by the broker and the brokers queue length.

Figure 9: CPU load, outstanding messages and queue length
of the service broker

For a whole site the CPU load can look as summarised in Figure 10. Here, the CPU
loads of all elements of a certain site are shown over a period of time.

Figure 10: CPU load of a sites service load-balancer, hosts and storage network

These results only show the ability of the simulation to basically prove that the
introduced UC model can be simulated. Future work will be focused on proving that
the outcomes of a simulation run adequately represent a service’s behaviour. One
major aspect will be the calibration of the simulation to represent a real world
scenario. Driven by these first results it is assumed that a technology-abstracted
simulation could not only be used to predict the behaviour of SOAP web services,
but also for RESTful services or simpler services, like web server clusters. Even
virtual infrastructures, e.g. VMware or Xen, could be simulated.

4. Summary

This paper defines the term Utility Computing as on-demand service provision
business model for Service-oriented Architectures. Based on this definition, it
evolves the demand for a lightweight technology-abstracted UC model for future
service provisioning projects. It shortly introduces the UC models of Bunker,
Mendoza and Zhang. All three models do not meet the depicted standard for a
lightweight technology-abstracted UC model, but, on the other hand, clearly show
the demand for such a model. Subsequently, the paper elaborates, based on the works
of Bunker and Mendoza, that service’s usage patterns are one conjunctive common
ground in future UC projects. Based on this finding it is shown that not only a
lightweight technology-abstracted UC model is useful within this relationship. Also
the simulation of such a model enables IT architects to optimize service cascades,
operations managers to predict resource loads and business managers to obtain
resilient information for IT investments and for the planning of price models. One
conceptual approach for a UC simulation is introduced in the second chapter of this
paper. As simulation framework OMNeT++ is used. As UC model, the model
described in (Heckmann, 2007) is implemented within the simulation framework.
The current state of implementation shows that all aspects of the model can be
transferred into the simulation. Yet implemented features are: resource measurement
and monitoring for CPU, memory and disk space, message billing to service
consumers, message routing by site costs, message routing by resource demand and
message queuing.

References

Bunker, G., Thompson, D., 2006. Delivering Utility Computing. Business-driven IT
Optimization: Business-Driven IT Optimization.

Heckmann, B., 2007. Service provision in a utility computing environment. SEIN 2007,
University of Plymouth, 14-15 June 2007.

IBM, 2003. A Taxonomy of the Actual Utilization of Real UNIX and Windows Servers. IBM
white papers.

Melzer, I., Dostal, W., Jeckle, M., 2007. Service-orientierte Architekturen mit Web Services.
Elsevier, Spektrum Akademischer Verlag.

Mendoza, A., 2007. Utility Computing Technologies, Standards, and Strategies. Artech House
Inc.

omnetpp.org, 2008. OMNeT++ Community Site. http://www.omnetpp.org.

Rappa, M. A. 2004. The utility business model and the future of computing services. IBM
Syst. J. 43, 1 (Jan. 2004), 32-42.

Singh, M., Huhns, M., 2005. Service Oriented Computing Semantics. John Wiley & Sons.

Yeo, C.S., Assunção, M.D., Yu, J., Sulistio, A., Venugopal, S., Placek, M., and Buyya, R.,
Utility Computing on Global Grids, Hossein Bidgoli (ed), The Handbook of Computer
Networks, John Wiley & Sons, New York, USA, accepted in April 2006 and in print.

Varga, A., 1997. Flexible topology description language for simulation programs.
SIMULATION IN INDUSTRY: 9TH EUROPEAN SIMULATION SYMPOSIUM 1997
(1997):225-229.

Varga, A., 1998. Parametrized topologies for simulation programs. PROCEEDINGS OF THE
COMMUNICATION NETWORKS AND DISTRIBUTED SYSTEMS MODELING AND
SIMULATION (CNDS'98) (1998):15-20.

Varga, A. 2001. The OMNeT++ Discrete Event Simulation System. In the Proceedings of the
European Simulation Multiconference (ESM'2001). June 6-9, 2001. Prague, Czech Republic.

Zhang, L.-J., Zhang, J., Cai, H., 2007. Services Computing, Core Enabling Technology of the
Modern Services Industry, published by Springer and Tsinghua University Press.

Economic Efficiency Control on Data Centre
Resources in Heterogeneous Cost Scenarios

Benjamin Heckmann, Marcus Zinn,
Ronald C. Moore, and Christoph Wentzel

University of Applied Sciences Darmstadt
Haardtring 100, 64295, Darmstadt, Germany

benjamin.heckmann@gmx.de

Andrew D. Phippen
University of Plymouth

Drake Circus, PL4 8AA, Plymouth, U.K.

Abstract—Optimisation of resource selection in hybrid cloud
data centres depends on the control of resource usage. The
primary criterion for this resource selection is economic effi-
ciency. The presented approach considers operational efficiency
aspects in service providing and therefore focuses on technical
criteria, such as resource load, as well as economic criteria, such
as the costs of resource usage. When services are offered at
different service levels the approach enables revenue optimisation
in cases of excessive load. The concept is prepared to handle
heterogeneous IaaS scenarios.

Keywords—Business, Cloud, Efficiency, Services-oriented Ar-
chitecture, Utility Computing

I. INTRODUCTION

The following concept characterises an approach to optimise
the resource selection in data centres. Both runtime and
deployment time are considered as point of decision about
the usage of resources. Primary criterion for this decision is
economic efficiency.

The project was conducted as an applied research in the field
of business informatics in close cooperation with a business
partner [1]. The developed approach for efficient control on
data centre resources in heterogeneous cost scenarios was
also implemented as a proof-of-concept [2]. The concept is
restricted to the following technical solutions for IT resource
offers specified by our business partner.

IaaS: Offering hardware resources located in data centres
(e.g., servers, storage, network) based on virtualisation tech-
nologies (e.g., VMware, Xen) is defined as Infrastructure as a
Service (IaaS) in this concept. Virtualisation enables the sep-
aration of hardware resources into smaller fractions, whereby
each fraction offers the same virtual hardware interfaces as
an actual hardware. In this context the IaaS focus is on
server virtualisation. These server fractions are called virtual
machines (VM). Hardware resources can be allocated to VMs
as demanded, depending on the features of the virtualisation
technology used. IaaS thereby describes the basic management
layer for data centre operations.

SaaS: Software applications can be deployed based on an
IaaS layer. In this context deploying business software in one
or several VMs to ease deployment and operation of multiple
parallel instances of this software is called Software as a
Service (SaaS). Thereby, SaaS describes the basic layer for
the consumer interaction.

Hybrid Cloud: In this paper the provisioning of resources
or IT services based on the paradigm of IaaS or SaaS is also
called cloud-based provision, conforming to the cloud defi-
nition of the National Institute of Standards and Technology
(NIST) [3]. In this paper hybrid clouds are compositions of
clouds offering the same type of service while their operation
technology may vary. The services analysed in this project
are operated as a hybrid cloud hosted in several data centres
across the world. A data centre may expose its resources as
a single cloud, but more often as the sum of multiple clouds,
each representing an individual technical solution grown over
time.

II. BACKGROUND

A. Cost Domains

Here it is assumed that in most cases the technical boundary
of a cloud also reflects an individual cost domain. This
is true when clouds reside in different data centres, even
more obvious in different countries. Clouds can also differ
in the applied technology for their operations. Distinguishable
cost domains can also originate out of significantly different
hardware performance, as in scenarios where older and newer
hardware are operated simultaneously within the same data
centre.

B. Utility Computing Service Life Cycle

Our concept takes major aspects of Heckmann et al. and
extends them significantly. The works of Heckmann et al.
reflect the characteristics of a service life cycle (business
planning, development and operations) in the context of Utility
Computing (UC). The business model of UC offers scalable
IT-based services metered by usage.

The main contributions aggregated from these results are:
• Technology-independent Provision Model [4]

The developed component architecture describes the min-
imum necessary functionalities and dependencies in an
operations environment for a UC service. This architec-
ture is used when services should be operated as part
of a service-oriented architecture (SOA) and hosted on a
cloud platform and are incorporated in an UC business
plan. Those scenarios (SOA and cloud and UC) are called
UC scenarios herein.

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 675

• Technology-abstracted Resource and Cost Simulation [5]
When services are orchestrated [6] using other services
and used in UC scenarios, complex service cascades
are formed. These cascades can be complex both ar-
chitecturally and economically. Both challenges can be
addressed with a simulation framework to analyse the
interaction between resource allocation and costs, service
orchestration, service purchasing costs, and service pric-
ing. A proof-of-concept implementation of such a simu-
lation framework for multi-tier operations environments
was implemented.

• Specification Paradigm for Service Quality [7]
Within the introduced results a new approach on agreeing
on service level for services in UC scenarios is described.
This approach offers a specification paradigm for service
quality description straight from a usage perspective. In
this case service levels are no more defined by technical
conditions. They are called business service level (BSL)
and are specified by describing the quantity and quality
of the consumers’ behaviour in using a service.

C. Research Objectives

The research objectives are examined from the perspective
of a service provider.

We assume a service provider with multiple data centres
spread worldwide. The data centres are operated as a hybrid
cloud with multiple clouds per data centre hosting SaaS offers
for a multiplicity of varying customers. Each service is offered
with more than one service level. Each cloud is considered to
be its own cost domain. The research objective is to make
potential savings accessible between different cost domains.
We provide an approach for a technical solution, including a
proof-of-concept implementation. This optimisation should be
performed at the initial resource allocation during deployment
of a service as well as continuously during its operations.

III. RELATED WORK

This research offers an approach to technically converge
the quality-related ontologies of service, experience, and busi-
ness as introduced by Moorsel [8] or Dobson and Sanchez-
Macian [9]. In the literature, three focuses on data centre
control related approaches can be found: effective data distri-
bution, quality of service (QoS) in networks [10] and reduction
of power consumption. The focus on effective data distribution
resides in the field of grid computing. Here large amounts
of data have to be distributed over several nodes so that
parallel calculations on the data slices accelerate the overall
processing of the data. In most grid architectures there is
an architectural component called broker [11]. This broker
controls the distribution, processing and result aggregation,
sometimes supplemented by billing or marketplace features,
like auctions and bidding. Different approaches are known to
accelerate processing, for example using resource reservation
or considering the problem as a queueing system [12].

In networks, QoS approaches mainly are focused on the
network layer. MDCSim [13] instead offers an approach for

a multi-tier data centre simulation, but focuses their outcomes
onto a comparison of Infiniband and 10 Gigabit Ethernet
network technologies.

The focus on reduction of power consumption centers
on server consolidation. Approaches for load prediction for
servers in a single data centre are shown by Speitkamp [14]
using historical data analysis, Bi [15] using a non-linear
optimisation model or based on a limited lookahead control
framework by Kusic [16]. Wang introduces an approach to
combine server consolidation and dynamic voltage and fre-
quency scaling [17]. An approach for service level manage-
ment in distributed infrastructures, including QoS translation
and support for self-adaptation, is shown by Freitas [18].

Load balancing on the level of data centres within and
between client devices is addressed by Peoples [19].

None of these approaches sufficiently covers the relation
between resources, services and consumers introduced in
Section 5 of this paper.

IV. RESEARCH APPROACH

The following steps were taken to obtain the research
objectives of making potential savings accessible between
different cost domains for SaaS providers:

1) Analysis of the customer-service-resource relation in
SaaS provision scenarios in the context of our business
partner (see section V).

2) Design of a generalised concept to efficiently control
data centre resources in heterogeneous cost scenarios
based on the previous analysis (see section VI).

3) Implementation of the design as a proof-of-concept (see
section VII).

V. ANALYSIS OF THE BUSINESS PARTNER CONTEXT

A. Model of the Customer-Service-Resource Relations

The relationships between a SaaS provider and its customers
are modelled with a data structure. This data structure is
subsequently used as the basis for the optimisation, and must
be modified only when the relationships between the provider
and the customers change. The provider and the customers are
represented by the nodes in a graph; the edges in the graph
represent the services provided.

Customers can have one or more contracts with the provider.
A contract applies to one or more consumer groups (e.g.,
branches) within the organisation of the customer. Each con-
sumer group relates to one or more services of the provider.
This relation incorporates the link to two service levels and one
usage pattern. A Usage Pattern is a quantitative and qualitative
description of the service usage behaviour of a consumer
group [7].

The price (per unit) and the contract penalty (per unit) are
stored attached to the link between the first service level, a
service and a consumer group. Accordingly, the price (per
unit) is also stored attached to the link affecting the second
service level. A penalty for this relation is not necessary, as it
reflects the service usage over and above the contracted usage
pattern.

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 676

Figure 1. Relations Between Resources, Services and Consumers

Services, one or several, act as connector between provider
and customer, more precisely between resource groups on
the provider side and consumer groups on the customer
side. Also a service relates to a backup specification and a
technical deployment set. Such a set contains necessary files
and configuration properties for deployment.

Resources are managed in groups. The primary grouping
criterion is technical, for example the virtualisation software
used. The secondary criterion is the geographical location, for
example the hosting data centre. The cost of the resource usage
(per unit) is an attribute of a resource. Linked to a resource
is the according technical interface for its administration and
monitoring (e.g., virtualisation management API). Addition-
ally, an availability class is linked to a resource group. The
availability classification enables an abstract categorisation to
distinguish between different level of technical availability
assurance.

Service level serve as abstract categorisation to differentiate
between varying level of service quality. Beside their previ-
ously described relations, a service level links to one or more
locations, one availability class and one backup specification.

The customer-service-resource relation is elaborated in the
data model in Fig. 1.

B. Mediation Conditions

In the research context resource groups are only considered
during resource selection when they conform to the required
quality properties. Resource selection should respect the tech-
nical load of resource groups and customer constraints such

as processing location. Only incoming service requests (e.g.,
from the consumer towards the service) should be considered.

VI. SOLUTION DESIGN

The required functionality for an efficient control on data
centre resources in the analysed context is distributed among
two architectural components, named Service Broker Manager
and Service Broker Gateway.

The Service Broker Manager implements the elaborated
data model described above and offers interfaces for inter-
action (e.g., graphical user interface (GUI), application pro-
gramming interface (API)). Beside the storage of the data
model the broker offers a method to match a service request
from a certain customer with a suitable resource. The broker
continuously analyses the monitoring data from all resource
groups and redirects service requests, including service relo-
cation, accordingly.

The matching between a customer’s service request and a
suitable resource is done in six steps. Preconditions are a given
service request and at least two resource groups:

1) Service type, service consumer and the service level
corresponding to the service request are determined.
Postcondition 1: identifiers for service type, service
consumer, and service level are known.
Precondition 2: service request and service type are
known.

2) Resource demand for the service request is estimated.
Postcondition 2: service request’s resource demand is
known.
Precondition 3: service request’s resource demand, ser-
vice type, and service level are known.

3) Pools of resource groups are selected by available re-
sources and matching service level.
Postcondition 3: two pools of resource groups are
known, where each resource group offers enough re-
sources for request processing and one pool complies
with the demanded service level and the other does not.
Precondition 4: service request’s resource demand, ser-
vice type, and service consumer are known.

4) The estimated revenue per pooled resource group for
request processing is calculated.
Postcondition 4: per given resource group the estimated
revenue is known.
Precondition 5: service request’s resource demand, ser-
vice type, service consumer, and service level are known.

5) Estimated costs for service level violation (latency ex-
ception and request failure) are calculated.
Postcondition 5: estimated costs for latency exception
and request failure are known.
Precondition 6: two pools of resource groups with
sufficient processing resources distinguished by service
level compliance, estimated revenue per pooled resource
group and estimated costs for latency exception and
request failure are known.

6) The most efficient opportunity out of the following
actions is selected:

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 677

Figure 2. Service Broker Component Architecture

• Request is processed by a service level conforming
resource group.

• Request is processed by a non-conforming resource
group.

• Request is not processed.
Postcondition 6: action for further request processing
determined.

The Service Broker Gateway acts as a load balancer on
the network layer. It reroutes service requests to appropriate
service instances, including the capability of dynamically
shaping the traffic up to the blocking of certain requests. This
is especially useful in cases of excessive load. Here requests
can be forwarded (or blocked) based on economic efficiency.

This Service Broker concept enables resource selection and
control on load distribution based on the elaborated relation.
An overview on the component architecture is given in Fig. 2.

VII. INITIAL RESULTS

As proof-of-concept the Service Broker Manager including
a GUI, API and the request-resource matching method has
been implemented. As a scenario for the evaluation of the
request-resource matching method a database with four cus-
tomers, each with two contracts affecting two consumer groups
is defined. Five services are available, whereby each consumer
group uses two services. As hosting environment two resource
groups are provided, hosted in two data centres as varying cost
domains. The self-service cloud portal of the business partner
uses the Service Broker API to retrieve a suitable resource
address during service deployment.

First tests using the self-service portal show the broker’s
ability to pick the most cost effective resource with enough
load reserve. This leads to a significant overall change in

load (and service instance) distribution among the two cost
domains. The load distribution shifts in favour of the more
cost-effective data centre. Without the broker-enriched self-
service portal, the deployment of new service instances took
about three weeks for the whole business process to terminate,
due to internal measurements of the business partner. Using
the broker-enriched portal the deployment time was reduced
to approximately 30 minutes.

These first outcomes demonstrate the proof-of-concept’s
ability to efficiently control data centre resources in hetero-
geneous cost scenarios.

VIII. FURTHER WORK

Feasibility of Business Processes: Our concept creates an
opportunity to also associate business process steps with our
data model. A similar approach was introduced by Heckmann,
but not elaborated to work based on resource load information.

Simulation-based Load Prediction: The Service Broker can
be extended based on the simulation framework for Utility
Computing elaborated by Heckmann [5]. Instead of retrieving
the current load through a service for resource monitoring
(referring to step three in Section 6) the broker can use load
forecasts.

Utilisation of External Services: From a provider’s per-
spective, at the current stage, the concept only addresses
incoming service requests. In addition, the concept could also
be extended to represent outgoing service requests to external
service providers. This could expand the efficiency of the
service provision one step further.

IX. CONCLUSIONS

This paper introduces and evaluates the Service Broker
concept.

The Service Broker is an approach to optimise the resource
selection in data centres. The concept enables the control of
resource usage both at runtime and deployment time. In this
research context, the primary criterion for resource selection
and subsequent request forwarding is economic efficiency.
The broker was evolved and evaluated in close cooperation
with a business partner. The evaluation of the concept was
done through a proof-of-concept implementation presented on
CeBIT 2011 as an applied research in the field of business
informatics.

The elaborated concept considers technical criteria, such as
resource load, as well as economic criteria, such as the costs of
resource usage. When services are offered at different service
levels the broker enables revenue optimisation in cases of
excessive load. Additionally, the concept is independent of the
technical solution for resource management (e.g., virtualisation
framework) and is prepared to also handle heterogeneous
technical scenarios.

REFERENCES

[1] P. Opper, “T-Systems International GmbH,” 2011.
[2] M. Zinn, “Cebit 2011,” 2011.
[3] P. Mell and T. Grance, “The NIST definition of cloud computing,”

Jul. 2010, (Access Date: 04/05/2011). [Online]. Available: http:
//csrc.nist.gov

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 678

[4] B. Heckmann, A. D. Phippen, R. C. Moore, and C. Wentzel,
“Agreeing on and controlling business service levels in Service-
Oriented architectures,” International Transactions on Systems Science
and Applications, vol. Vol. 7, no. No. 3/4, pp. 173–178, Dec. 2011.
[Online]. Available: http://siwn.org.uk/press/sai/itssa0007.htm

[5] B. Heckmann, I. Stengel, A. Phippen, and G. Turetschek, “Utility
computing simulation,” in ESM’2009 The 2009 European Simulation
and Modelling Conference. Leicester, United Kingdom: EUROSIS-ETI,
Oct. 2009, pp. 175–180. [Online]. Available: http://www.eurosis.org

[6] T. Erl, SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Prentice Hall PTR,
2007.

[7] B. Heckmann and A. Phippen, “Quantitative and qualitative description
of the consumer to provider relation in the context of utility computing,”
in Proceedings of the Eighth International Network Conference (INC
2010), Heidelberg, Germany, Jul. 2010, pp. 335–344.

[8] A. Van Moorsel, “Metrics for the internet age: Quality of experience
and quality of business,” 5TH PERFORMABILITY WORKSHOP, 2001.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.24.3810

[9] G. Dobson and A. Sanchez-Macian, “Towards unified QoS/SLA ontolo-
gies,” in IEEE Services Computing Workshops, 2006. SCW ’06. IEEE,
Sep. 2006, pp. 169–174.

[10] R. Braden, D. Clark, and S. Shenker, “RFC 1633 -
integrated services in the internet architecture: an overview,”
http://www.apps.ietf.org/rfc/rfc1633.html, Jun. 1994. [Online]. Avail-
able: http://www.apps.ietf.org/rfc/rfc1633.html

[11] S. Venugopal, R. Buyya, and L. Winton, “A grid service broker for
scheduling distributed data-oriented applications on global grids,” in
Proceedings of the 2nd workshop on Middleware for grid computing,
ser. MGC ’04, 2004, pp. 75–80, ACM ID: 1028506.

[12] A. Afzal, A. S. McGough, and J. Darlington, “Capacity planning
and scheduling in grid computing environments,” Future Generation
Computer Systems, vol. 24, p. 404414, May 2008, ACM ID: 1350010.

[13] S. Lim, B. Sharma, G. Nam, E. K. Kim, and C. Das, “MDCSim: a
multi-tier data center simulation, platform,” in Cluster Computing and
Workshops, 2009. CLUSTER ’09. IEEE International Conference on,
2009, pp. 1–9.

[14] B. Speitkamp and M. Bichler, “A mathematical programming approach
for server consolidation problems in virtualized data centers,” Services
Computing, IEEE Transactions on, vol. 3, no. 4, pp. 266–278, 2010.

[15] J. Bi, Z. Zhu, R. Tian, and Q. Wang, “Dynamic provisioning modeling
for virtualized multi-tier applications in cloud data center,” in Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on,
2010, pp. 370–377.

[16] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments
via lookahead control,” in Autonomic Computing, 2008. ICAC ’08.
International Conference on, 2008, pp. 3–12.

[17] Y. Wang and X. Wang, “Power optimization with performance assurance
for multi-tier applications in virtualized data centers,” in Parallel Pro-
cessing Workshops (ICPPW), 2010 39th International Conference on,
2010, pp. 512–519.

[18] A. L. Freitas, N. Parlavantzas, and J. Pazat, “A QoS assurance framework
for distributed infrastructures,” in Proceedings of the 3rd International
Workshop on Monitoring, Adaptation and Beyond, ser. MONA ’10, 2010,
p. 18, ACM ID: 1929567.

[19] C. Peoples, G. Parr, and S. McClean, “Energy-aware data centre man-
agement,” in Communications (NCC), 2011 National Conference on,
2011, pp. 1–5.

Copyright © 2012 ICITST-2012 Technical Co-Sponsored by IEEE UK/RI Computer Chapter 679

335

 Applications and Impacts

Quantitative and Qualitative Description of the Consumer
to Provider Relation in the Context of Utility Computing

Benjamin Heckmann1, Andrew D. Phippen2

In memoriam Günter Turetschek

1h_da – University of Applied Sciences Darmstadt, Germany
2Centre for Security, Communications and Network Research

University of Plymouth, United Kingdom
benjamin.heckmann@gmx.de

Abstract: Utility Computing service provision aims to control the service quality for a
wide range of consumers. To closely control the desired service quality in each phase
of the service operations lifecycle, it is essential to be able to describe the quantita-
tive and qualitative relation between consumer and provider. This work introduces
Usage Patterns as a description language for the planning of quantitative relations and
Provisioning Factors to control the qualitative relations during runtime.

1 Utility Computing

This work is focused on the modelling and simulation of service usage in the context of
Utility Computing (UC). The term utility thereby refers to the field of industry. Here a
public utility [Bri10] describes an enterprise that provides certain classes of services to a
wide range of consumers.

The name Utility Computing indicates the vision of IT-based services comparable to pub-
lic utilities. In this work Utility Computing is defined as a business model for service
providers offering IT-based services and charging service consumers per usage, according
to [Rap04]. From the provider’s IT perspective UC is about service provision that is able
to scale dynamically, according to real-time fluctuations in demand [BT06]. Addition-
ally, UC service provision offers its services equipped with the ability to charge service
consumption per use [Nee02].

From a consumer’s perspective UC is related to “the reduction of IT-related operational
costs and complexity” [YdAY+06]. Both perspectives, provision and consumption, have
in common to target a better utilisation of generally underutilised IT resources [AAR02] on
both sides. In summary, UC implicitly claims an abstract description of how IT resource
utilisation, its total costs and service prices relate (see Figure 1).

Thereby Utility Computing does not refer to a specific IT service definition. From a busi-
ness perspective any IT service where, from an economical point of view, it makes sense
to charge it by its usage is addressed by UC, e.g. flight scheduling, webspace offers or

336

INC 2010

others. Therefore a more abstract service definition is the most suitable for UC: A ser-
vice represents a type of relationship-based interaction between a service provider and a
service consumer to achieve a certain solution objective [Zha07]. From a technical per-
spective there are several types of services that fit this definition, e.g. web services (SOAP,
RESTful and others), HTTP web servers or virtual infrastructures (Xen, KVM and others).
Service types outside the UC scope are e.g. IT projects or hardware sales.

Figure 1: Levels of service usage in the context of this work

2 Service Quality

Utility Computing strongly addresses the aspect of service quality. This is implied by the
vision of UC as a business model for IT service providers comparable to public utilities in
case of necessity, reliability, usability, utilisation, scalability and exclusivity [Rap04]. All
these attributes directly or indirectly address the quality of the service provision.

The definition about what quality criteria for a service offer are chosen and how they are
monitored is subject to a service level agreement (SLA)1 between the service provider and
a service consumer. This work addresses SLA on the level of technical agreements of
service quality, not the functional level. Thereby technical means: all technically measur-
able requirements relevant for the attended service response properties beside functional
correctness. Functional correctness describes the accurate behaviour of a service on the
layer of business logic. For example, a service method invocation with accurate method
parameters, according to the specified parameter value ranges, must compute the accurate
result set consisting of the expected business data.

1referring to the context of ITIL

337

 Applications and Impacts

In this work, response time is defined as the primary SLA criterion for the service con-
sumer’s perspective in the context of UC. Other possible primary SLA criteria, like con-
tinuity or security of service offers, are neglected. From the UC consumer perspective,
request response times must be independent of the overall provider load. This implies the
abdication of contracted resource reservations of any kind. Otherwise the targeted dynamic
scale and optimised resource utilisation cannot be addressed by the UC provider. Response
time is the outcome of the secondary SLA criteria on the service provider side, defined as
request processing complexity and overall request amount. These criteria are subject to
the individual SLA between provider and consumer. This definition differs from known
definitions of SLA, which use resource centric criteria and therefore do not recommend
for UC scenarios.

In addition to service quality criteria, according classes of observed criteria value ranges
and corresponding actions must be specified during contracting. For the criterion of re-
sponse time, aberrations could be classified as:

• Better – for service response times beyond the minimum specified acceptable period
of response time.

• Within acceptable range – for service response times between the minimum and the
maximum of specified acceptable periods of response time.

• Beyond unacceptable limit – for service response times beyond the maximum spec-
ified acceptable period of response time.

• Unprocessed requests – for technically and functionally accurate service requests
that never got processed by the service provider, e.g. for dropped requests due to
resource overload on the provider side.

Beside the definition of service quality criteria, the management of service quality is of
interest to the service provider. A classical approach to manage the quality of service
provision is the capacity management. Here the goal is to provide the necessary amount
of resources for a certain service quality level at any time. This paper additionally pro-
poses to manage the quality of service provision by managing the service usage. In this
work usage management contains the indirect consumption management affecting the con-
sumer side and the direct provision management on the provider side. Consumption man-
agement uses the provider’s abilities such as SLA or price scales to indirectly influence
the service consumer’s usage behaviour. Therefore it addresses the quantitative aspect of
the consumer-provider relation. For the qualitative aspect of the relation, provision man-
agement monitors, evaluates and directly controls service request routing and processing
resource utilisation.

338

INC 2010

3 Research Objectives

The overall context of this work focuses on specific aspects of the service operations lifecy-
cle (SOL) [HSPT09]2 for service offers based on the business model of Utility Computing.
In the phase of service business planning this work refers to the corresponding service
properties and service usage profiles resulting from the previous UC definition. During
service development and the phase of service operations this work will focus on services
in the technical context of Service-oriented Computing (SOC) [Pap03] corresponding to
the paradigm of Cloud Computing as described by [BMQ+07].

In this context a description of the modifications necessary to transfer a standard service
operations lifecycle into a UC SOL is missing. This includes the demand for an explicit
definition of UC’s core relation between IT resource utilisation, its total costs and service
prices. Also specific attention must be given to the implications of complex UC usage
scenarios.

The unidentified implications of complex UC usage scenarios considerably compromise
the planning, development and operation of UC service offers. Under these conditions the
prediction of resource utilisation and dependent operational costs, calculation of subse-
quent price scales, and subsequent runtime gross price calculations will fail.

4 Research Approach

The overall work starts from the business perspective, as technical requirements depend
on the business requirements imposed. Therefore, a five step approach to find solutions
for the specified objectives is proposed:

1. Describe the current state of service usage in the context of Utility Computing.

2. Elaborate a detailed definition for the relation between a service and its consumer.

3. Analyse the SOL of UC services.

4. Determine the implications of complex UC usage scenarios regarding SOL.

5. Deduct a corresponding strategy to handle the complexity.

This paper focuses on the elaboration of the quantitative and qualitative relation between
service consumers and providers in the context of UC service provision quality manage-
ment.

2SOL phases are defined as: business planning, development and operations

339

 Applications and Impacts

5 Usage Patterns

To be able to describe the core relation of Utility Computing, the following is assumed:
UC implies a relation between IT resource utilisation, its total costs and service prices.
This relation basically can be described by the quantitative usage relation between con-
sumers and a service, enriched by metadata. All other variables are deducted from this
usage relation, like cost and price calculations. This work proposes Usage Patterns as a
description language for this quantitative usage relation.

For the IT architect’s work, “new data, which includes usage patterns, will be added to
the list of things to be considered” [Men07]. But the term Usage Pattern is not clearly
defined in computer science. Some similar terms are used to describe traffic in computer
networks or load in enterprise data centres. But none of these terms is applicable in the
Utility Computing service provision context of this work.

As an entry point to service usage description the works of [LyCMO06] are introduced.
Liang defines three perspectives of service usage and collects data on these levels as entry
points for his usage data mining on web services. These levels of service usage are:

• User request level – The user request level of service usage addresses the outer view
on composite services. This perspective focuses on how composite services are
used by the consumer. This level is not aware of the optional complexity of service
cascades or the diversity of providers within the cascade.

• Template level – The template level of service usage addresses the inner view on ser-
vice correlations. A service template is defined as a flow of services, the final output
of which can satisfy the consumer’s need. At this level service usage concentrates
on how services correlate.

• Instance level – The instance level of service usage addresses the constraints of the
service runtime environment of the service provider. These constraints restrict how
services are implemented and whether and how they can function.

Usage Patterns are concerned with the user request level and template level of Liang’s
definition of service usage, see Figure 1. Both of these perspectives describe relations
between services and their consumers.

A Usage Pattern defines the quantitative usage relation between an unlimited number of
service consumers and a particular service offered by a service provider. Thereby con-
sumers are grouped according to their usage behaviour. This behaviour is expressed by one
or more request classes, whereby the relation provides the request frequency as attribute
with equal distribution assumed. Each request class describes a certain usage behaviour
towards the function of a service.

This behaviour is described by an abstract function parameters class. Each class repre-
sents a characteristic combination of function parameter value ranges that imply a certain
function call behaviour. It is assumed that for most functions the resource demand for pro-
cessing a function call can be deducted from given parameter values. It is known that there
are functions where this assumption fails, e.g. a function to calculate the total amount of a

340

INC 2010

bank account given the account number. It is not possible to estimate the resource demand
of this calculation by evaluating the account number.

Also a request class may relate to any number of sub-request classes. For this recursive
relation a request frequency attribute is provided, with equal distribution assumed. It is
known that this ability to describe service cascades breaks the paradigm of service ab-
straction [Erl07]. Therefore this feature is optional.

The detailed relations which altogether instantiate a Usage Pattern are shown in Figure 2
using an entity relationship diagram [Che76].

Figure 2: Usage Pattern as ER diagram

6 Service Operations Lifecycle Interaction

Imagine a service provider plans to offer a new web service [(W304] consistent to the busi-
ness model of Utility Computing. In the first phase of the SOL, business planning for this
service offer is conducted. In this example the executive expects three market segments in
which the service could successfully be offered. In each segment different consumer num-
bers and usage behaviour are expected, due to the analyses of typical consumers. Based
on these expectations a first simple Usage Pattern instance is derived.

Given this first pattern, IT architects and operations managers now jointly estimate the
resource consumption of the future service architecture. This estimation is incorporated
into the business planning by deducting the operational costs for the predicted resource
consumption. This gives the executive the chance to validate planed price scales at an early
stage. Beside the Usage Pattern instance representing the expected consumer behaviour,
the executive elaborates a worst and a best-case scenario. In addition to the estimation

341

 Applications and Impacts

of the quantitative consumer behaviour, the executive specifies the service quality to be
offered in each market segment.

As a base for their estimations IT architects will need a suitable provisioning model. Both
will need a simulation of such a model to evaluate service quality and resource demand of
service cascades. Both items, the model and its simulation, are described in [HSPT09].

In the development phase of the SOL the IT architect details the given Usage Pattern
instances from the previous SOL phase. In this example it is estimated that the orchestra-
tion of another web service is reasonable. To accelerate the development reuse is chosen.
Based on this extended Usage Pattern instance, conducting a simulation of the planned
architecture helps the IT architect to validate previous resource demand estimations early.
Even more importantly: he can validate service quality early and continuously during de-
velopment.

After the new service is transferred to operations, the responsible manager needs to man-
age the service provision quality. Beside the indirect ability of consumption management,
a continuous capacity planning is essential. Based on the estimation of future usage be-
haviour, provided by the executive, capacity demand for all offered services is simulated,
respecting their interactions. This analysis is conducted as a worst-, standard- and best-
case scenario to enable the executive to decide about future investments. Again, these
quantitative conditions are described in Usage Patterns, thereby representing the base for
simulation runs. Beside this continuous capacity planning in the SOL phase of service op-
erations, service quality is guaranteed by provision management. Provision management
ensures service quality by managing the routing of service requests. To calculate a routing
decision, Provisioning Factors are used.

7 Provisioning Factors

The active management of service requests at runtime aims to gain direct control of the
processing resource utilisation by controlling the routing of service requests. Besides the
continuous monitoring of the utilisation of processing resources, the decision about the
route of a request is the core of future provision management. To calculate this deci-
sion, measurable criteria, that both express technical and economical aspects of the re-
quest processing, must be defined. In this work these technical and economical criteria are
called Provisioning Factors. These factors represent the qualitative aspect of the consumer-
provider relation.

Provisioning Factors are segmented into three main factors:

• Processing factor: The processing factor aims to calculate the costs for the pro-
cessing of a service request on provider-owned resources. These costs derive from
the fixed costs for service hosting, e.g. for server acquisition, housing and admin-
istrative personnel, and corresponding dynamic costs, e.g. for cooling and power.
The process to identify the individual combination of these fixed and dynamic costs
is not part of this work. Before the calculation of the processing factor, resource

342

INC 2010

availability for request processing must be ensured. If the resources are available,
the processing costs using the selected resources are calculated. This calculation in-
cludes all costs for sub-requests performed by the request. It is known that detailed
analyses of large service cascades in order to find the optimum costs or to calculate
the exact resource demand at runtime may fail in complex provisioning scenarios.
In this case this work suggests calculating approximations instead.

• Outsourcing factor: Beside the option to process requests on provider-owned re-
sources, scenarios are conceivable, where it can be an economical alternative to for-
ward requests to other service providers for processing. Such outsourcing decisions
can be appropriate for all layers of a service cascade. From processing customer
requests on competitor sites in times of peak loads up to the dynamic processor
picking for back-end services, such as the retrieval of geological information. The
outsourcing factor aims to calculate the costs for external request processing.

• Neglecting factor: Instead of the two previous factors the neglecting factor aims to
calculate the costs for an intentional violation of the SLA agreed with the consumer.
Thereby the violation may at worst consist of a request drop, but also in other aber-
rations form the given SLA. To achieve this flexibility, the costs for all contracted
variations of service level aberrations must be taken into account.

All three Provisioning Factors calculate costs. Combined with the consumer’s contracted
price list, the profit or loss of a request routing decision can be estimated. Note that all
mentioned costs may vary over time on individually contracted factors, such as the time
of day or discounts on request amounts. The introduced factors are only proposals used in
this work. It is possible to add or remove criteria as needed in other contexts.

8 First Outcomes

First outcomes can be shown analysing an example scenario. In this example the profit of
a service provider is analysed during peak demands, where significantly more resources
to process all incoming service requests are necessary than are available. The example
provider offers a single service to a certain range of consumers. The consumers can be
grouped into three SLA groups. Each SLA group differs in maximum request response
time, pricing and contractual penalty. It is assumed that in terms of request complexity,
request frequency and request number each consumer behaves equally. The number of
consumers in the highest and lowest SLA group is equal. The number of consumers in the
medium SLA group is double the size of one of the other groups. The metered values in
this scenario are the total number of requests and for each SLA group: number of request
responses, mean of response duration, request drops, SLA fails and profit.

Compared are two scenario alternatives: classical vs. UC provision management during
peak demands. In classical provision management resources are shared at a fixed ratio
at runtime. During peak demands, this constraint also applies to more flexible classical
resources sharing alternatives, where unused resources can be borrowed among other con-

343

 Applications and Impacts

sumers. For UC provision management it is assumed that request routing is adapted at
runtime based on the Provisioning Factors introduced in this work.

The scenario is modelled as discrete-event model presenting a multi-tier IT architecture to
process service requests. The model is implemented using the [HSPT09] UC simulation
framework. Figure 3 shows the comparison between a classical and an UC simulation
run. Both runs represent a simulation period of 30 minutes with 40 requesting consumers
using random request invocations. Analysing the outcomes, the distribution and drop rates
of requests between each SLA group are even. But there are significant improvements in
means of response duration for the primary and secondary SLA group and in SLA fails for
the primary SLA group. These shifts directly lead to a significant higher profit in the UC
provision management scenario.

Classic UC
[1] Total number of requests 15.594 15.738
[2] Number of request responses
Total 13.683 88% of [1] 13.704 87% of [1] Earnings per request
SLA 1 3.539 26% of [2] 3.560 26% of [2] 0,25 €
SLA 2 6.963 51% of [2] 7.007 51% of [2] 0,05 €
SLA 3 3.181 23% of [2] 3.137 23% of [2] 0,01 €
[3] Mean of response duration
Total 9,05 sec 10,46 sec SLA classes
SLA 1 9,05 sec 7,40 sec 10,00 sec max.

SLA 2 9,05 sec 7,59 sec 15,00 sec max.

SLA 3 9,05 sec 16,38 sec 30,00 sec max.

[4] Request drops
Total 1.911 12% of [1] 2.034 13% of [1] Drop fine per request
SLA 1 573 30% of [4] 627 31% of [4] 0,50 € 0,75 €

SLA 2 1.129 59% of [4] 1.166 57% of [4] 0,02 € 0,07 €

SLA 3 209 11% of [4] 241 12% of [4] none 0,01 €

[5] Request response SLA fails
Total 1.729 11% of [1] 1.216 8% of [1] SLA fine per request
SLA 1 981 57% of [5] 480 39% of [5] 0,25 € 0,50 €

SLA 2 726 42% of [5] 708 58% of [5] 0,01 € 0,06 €

SLA 3 22 1% of [5] 28 2% of [5] none 0,01 €

[6] Provider profit
Total 219,56 € 434,68 € 198% of classical [6]

SLA 1 -35,50 € 179,75 €
SLA 2 225,56 € 226,25 €
SLA 3 29,50 € 28,68 €

Figure 3: Analyses of a simulation run

9 Conclusions and Further Work

In this paper the quantitative and qualitative description of the consumer-to-provider re-
lation in the context of Utility Computing is analysed. Derived from the demands of
service quality management and the Utility Computing business model, Usage Patterns
are introduced to address the definition of the quantitative consumer-to-provider relation.
Usage Patterns are used to enrich the service operations lifecycle to enable the analyses
of the qualitative consumer-to-provider relation during strategic planning. To address the
qualitative consumer-to-provider relation at runtime, Provisioning Factors are introduced.
Building on these factors, requests can be prioritised to optimise provider profits. The

344

INC 2010

introduced example uses a Usage Pattern to define its demand scenario. The simulation
of the Usage Pattern shows that runtime request prioritisation raises profits, while higher
service levels benefit from shorter response times. Further research aims to verify the sim-
ulation results analysing a real world scenario. The main aspect here will be the calibration
of the simulation runs to reflect the current resource consumption of the simulated service
requests.

References

[AAR02] Artur Andrzejak, Martin Arlitt, and Jerry Rolia. Bounding the Resource Savings of
Utility Computing Models. 2002.

[BMQ+07] Greg Boss, Padma Malladi, Dennis Quan, Linda Legregni, and Harold Hall. Cloud
Computing. IBM DeveloperWorks, October 2007.

[Bri10] Encyclopaedia Britannica. public utility. http://www.britannica.com, 2010.
[BT06] Guy Bunker and Darren Thomson. Delivering Utility Computing: Business-driven IT

Optimization. John Wiley \& Sons, 2006.
[Che76] Peter Pin-Shan Chen. The entity-relationship model - toward a unified view of data.

ACM Trans. Database Syst., 1(1):9–36, 1976.
[Erl07] Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-Oriented

Computing Series from Thomas Erl). Prentice Hall PTR, 2007.
[HSPT09] Benjamin Heckmann, Ingo Stengel, Andy Phippen, and Guenter Turetschek. Utility

Computing simulation. In ESM’2009 The 2009 European Simulation and Modelling
Conference, pages 175–180, Leicester, United Kingdom, October 2009. EUROSIS-
ETI.

[LyCMO06] Qianhui Liang, Jen yao Chung, Steven Miller, and Yang Ouyang. Service Pattern
Discovery of Web Service Mining in Web Service Registry-Repository. In 2006
IEEE International Conference on e-Business Engineering (ICEBE’06), pages 286–
293, Shanghai, China, 2006.

[Men07] Alfredo Mendoza. Utility Computing Technologies, Standards, and Strategies. Artech
House Inc, April 2007.

[Nee02] Dan Neel. The utility computing promise.
http://www.infoworld.com/d/networking/utility-computing-promise-807, April
2002.

[Pap03] M.P. Papazoglou. Service-oriented computing: concepts, characteristics and direc-
tions. In Proceedings of the 7th International Conference on Properties and Applica-
tions of Dielectric Materials (Cat. No.03CH37417), pages 3–12, Rome, Italy, 2003.

[Rap04] M. A. Rappa. The utility business model and the future of computing services. IBM
Syst. J., 43(1):32–42, 2004.

[(W304] World Wide Web Consortium (W3C). Web Services Architecture.
http://www.w3.org/TR/ws-arch/, February 2004.

[YdAY+06] Chee Shin Yeo, Marcos Dias de Assuncao, Jia Yu, Anthony Sulistio, Srikumar Venu-
gopal, Martin Placek, and Rajkumar Buyya. Utility Computing and Global Grids.
cs/0605056, May 2006.

[Zha07] Liang-Jie Zhang. Services Computing: Core Enabling Technology of the Modern
Services Industry. Tsinghua University Press ;;Springer, Beijing ;Berlin ;;New York,
2007.

Service provision in a Utility Computing environment

Benjamin Heckmann

Network Research Group, University of Plymouth, Plymouth, United Kingdom
email: benjamin.heckmann@gmx.de

Abstract
This project is motivated by the gap between technology-centred service provisioning frameworks and the
business model Utility Computing. In the beginning this paper introduces the term ‘Utility Computing’ [UC] as
an on-demand service provision business model for Service-oriented Architectures. It distinguishes Utility
Computing from technology-originated terms such as Grid or J2EE.

The paper describes these technologies as possible frameworks to implement IT architectures for UC business
models. And it determines that actual frameworks are not smart enough to fit the service provisioning demands
of small to medium-sized businesses. Therefore a technology-independent and UC-conform service provisioning
model is claimed, that enables framework evaluations and simulations of provisioning demands.

Subsequently, the basic structure for a technology-independent, UC-conform service provisioning model is
described. As a first step towards such a model this paper introduces the general conditions for such a network,
underlying use cases, derived network elements and appropriate workflows. With this as base the overall project
aims to provide a technology-abstracted model for service provision and fundamentals for load characteristic
simulations for UC environments.

Keywords

SaaS, On Demand, Utility Computing, Grid, Service-oriented Architecture, Service Billing,
Web Service Provision, Quality of Service

1. Introduction

1.1. On Demand Service Provision for Service-oriented Architectures

Service-oriented Architectures [SOA] (MacKenzie et al., 2006) are one of the most observed
topics in IT today. More and more standard software products are delivered ‘SOA-ready’,
which in most cases means additionally equipped with a webservice interface. This paper will
focus on SOAP-based webservices (Booth et al., 2004) as implementation technology for
SOAs.

On the service consumer side ‘SOA-readiness’ means that the encapsulated functionality
becomes accessible to each business process step separately. As a result, you can easily
rearrange your business processes, while your backend software stays untouched.

On the service provisioning side this means that with standardised interfaces and firewall-
friendly protocols, service provision could evolve to its next step: from locally deployed
purchased software packages to remotely hosted pay-per-use services.

This business model of leasing remote services and charging the customers per usage is
defined with the term ‘Utility Computing’ [UC] in this paper. It is also known under the terms
Software-as-a-Service [SaaS] or On-Demand Computing. Additionally, this paper discusses

UC frameworks, networks, models and further elements that can act as part of the
implementation of a Utility Computing business model.

1.2. Utility Computing frameworks for small and medium-sized businesses

Future works should be concerned with the question of whether there a suitable UC
framework for the service provision in small and medium-sized businesses [SMB] based on
open source software. Currently the estimated answer is: not yet.

To be able to latter follow up this question, an abstract model for a UC framework is required.
This paper will attempt to define the basic elements and workflows for a UC network in
preparation for designing a technology-abstracted UC model.

1.3. Meshed services and resource prediction

This project also aims to reach conclusions about basic questions linked with the operations of
UC services. Simulations of service network behaviour, based upon the model to be
elaborated, should shed light on the following questions:

 The behaviour of highly meshed UC services in response to service failures and in
case of service loops.

 The ability for resource prediction for UC service providers to identify bottlenecks in
the UC infrastructures including service clients, the UC service network and
embedded foreign services.

Planning of peak demand scenarios for provided services and basic operating figures
for pricing strategies, which should be covered by information gathered for bottleneck
identification in conjunction with variations of the simulated scenarios.

To recapitulate, this project should deliver a technology-independent, UC-conform model as a
background for future UC framework evaluations and simulations of UC provisioning
scenarios.

1.4. Outline of research

In the following second chapter the conceptual approach for the overall project is described.
The chapter describes the three major steps towards a UC model that enables evaluations of
technology-dependent UC implementation frameworks: context gathering, model building
and confirmation of the model.

Afterwards the terms Utility Computing, Grid and J2EE are demarcated in the third chapter.
The demarcation provides a better understanding for the coherence between UC as a business
model and technology frameworks like Gird or J2EE.

As core subject of this paper the basic elements and workflows of a UC network are
introduced in chapter four. The elements and corresponding basic workflows are based on a
service consumption and a service provision use case. These use cases are derived from works
from OGSA, GGF and industry best practices like ITIL.

2. Conceptual approach for the project

2.1. Pre-modelling context building

In the context phase, the project defines its basic terms and elaborates its background and
related work. The most important term should be Utility Computing itself. As a business
model it is technology-independent and focused on economic opportunities of the utility idea.

As a result, detailed analyses of provisioning costs or capacity demands pre to investments
can not be made. Also, comparisons of different provision technologies are not possible. This
is due to a missing technology-abstracted service provisioning model substantiating the
business model.

In addition, possible current technologies to provide UC-conform services should be
examined and demarcated. The gathered information should provide a basis for provisioning
conditions.

2.2. Technology-independent, UC-conform service provisioning model

The model building phase of the project is separated into four consecutive steps:

(1) As an initial point for model building, the use cases collected in the context of the Open
Grid Services Architecture [OGSA] and results of the EU GRASP project that aim to
define an infrastructure for Application Service Provision [ASP] based on GRID
technology will be reused.

Additionally, the model should consider the basic characteristics of industry standards
like ITIL or CobiT. Based on these existing use cases and industry-class service
delivery demands, new UC-centred uses cases must be derived.

(2) Taking the derived UC-centred use cases as a basis, the technology-independent and
UC-conform service provisioning components must be identified.

(3) The basic workflows for the component interaction must be described. They should at
least enable the model to provide services that are scalable over cost-domains and can
be billed according to customer usage.

(4) A complete model must be built based on the defined service provisioning components
and workflows. This model should be usable as a basis for simulation-based analyses of
UC networks.

2.3. Simulation-based analyses

In the simulation phase of the project, the previously developed model will be utilised for the
implementation of a simulation environment for UC-conform service provisioning.

The following activities are necessary:

(1) A suitable simulation framework for the developed model must be selected.

(2) The model must be implemented within the selected framework.

(3) First simulations should be accomplished. They should address the behaviour of highly-
meshed UC services and provide the basis for the examination of peak demands within
the simulated model.

3. Background and Related Work

As preparation for defining the Utility Computing model, this paper defines and demarcates
the terms Utility Computing, Grid and J2EE.

3.1. UC, Grid and J2EE definition

 Utility Computing

Utility Computing describes a business model to offer software-based services in the future.
While today we are becoming increasingly reliant on computer technology, an interesting
question arises: “Is computing the next utility?” (Rappa, 2004)

To answer this question, the term ‘utility’ first should be defined. The difference in offering a
‘service’ to a customer or a customer who utilises a ‘utility’ is shaped by the underlying
requirements on the consumer side: necessity, reliability, usability, utilisation, scalability and
exclusivity. Additionally, the business model is based on the metering of usage combined
with a ‘pay as you go’ approach. For more detailed description see (Rappa, 2004).

From the service consumer perspective, the most important advantages of Utility Computing
are “the reduction of IT-related operational costs and complexity” (Shin Yeo et al., 2006).
The investments for the IT infrastructure are no longer static costs for technology and
operating staff, but now depend on the usage of the utilised services. As a result the costs
become variable.

On the other hand service providers can serve their resources to a wide spread number of
users with diverse usage patterns. This increases the chance to minimise unutilised resources
on the provider side. “Utility computing also enables providers to achieve a better Return On
Investment (ROI) such as Total Cost of Ownership (TCO) […] .” (Shin Yeo et al., 2006) For
more detailed description see (Shin Yeo et al., 2006).

Due to the ‘pay-per-use’ approach of UC there is a new direct relation between IT service
provisioning costs and business process costs, especially in the context of Service Oriented
Computing [SOC] (Munindar and Huhns, 2005). Following this approach, the costs for
processes that utilise UC-based services are quite easy to comprehend. “The provider may be
an organization’s IT department or an external utility provider, and the service may be
storage, computing, or an application.” (Foster and Tuecke, 2005)

 Grid

Basically, a Grid “coordinates resources that are not subject to centralized control” (Foster,
2002). This means that it is a system that is able to dispose requests for a certain functionality
under known resources, regardless of the administrative domain in which a resource is hosted.

One major aspect for achieving this ability is “using standard, open, general-purpose
protocols and interfaces” (Foster, 2002) to build a Grid. The final needed characteristic of a
Grid is that it must be able “to deliver nontrivial qualities of service” (Foster, 2002), which

implies that in a Grid “the utility of the combined system is significantly greater than that of
the sum of its parts” (Foster, 2002). For more detailed description see (Foster, 2002) and
(Foster and Kesselmann, 2004).

Figure 1: Grid layers (Shin Yeo et al., 2006)

 J2EE

J2EE is an application model that supports applications that implement enterprise services.
“Such applications are inherently complex, potentially accessing data from a variety of
sources and distributing applications to a variety of clients.” (Sun, 1999) The middle tier of
this application model offers its deployed services to consumers. It handles properties like
high availability, security and scalability, “to insure that business transactions are accurately
and promptly processed” (Sun, 1999). To store the data processed by the middle tier services
the EIS-Tier is used. For more detailed description see (Sun, 1999).

Figure 2: J2EE architecture (Sun, 1999)

3.2. UC, Grid and J2EE demarcation

 UC vs. Grid

Utility Computing as a business model requires a technical environment to offer its services.
Grids have the potential to serve as an appropriate service host. Grids aim to enable resource
sharing and problem solving on an infinite number of computing devices. As a result, multi-
institutional virtual organizations can be built upon a wide range of computing devices that
are logically coupled together and presented as a single unified resource. “The design aims
and benefits of Grids are analogous to those of utility computing, thus highlighting the

potential and suitability of Grids to be used as utility computing environments.” (Shin Yeo et
al., 2006) For more detailed description see (Shin Yeo et al., 2006).

 Grid vs. J2EE

To implement Grid services, a specific hosting or execution environment is needed. This
environment is characterised through certain development tools and programming languages
that meet the Grid service semantics. Previous Grid applications are realised by relying on
native operating system processes as their hosting environment.

Modern container- or component-based hosting environments such as J2EE can also be used
to implement Grid services. These environments offer a framework to build complex
applications that offers superior programmability, manageability, flexibility and safety. For
more detailed description see (Foster et al., 2002).

Figure 3: Grid architecture (Foster et al., 2002)

 UC vs. J2EE

The common trend as described in ‘Grid vs. J2EE’ is using a Grid that is J2EE-based. For an
example of building a J2EE-based Grid, see (Araki, 2004).

A standalone solution for J2EE-based UC is not known. J2EE-clusters are possible, but
without billing and cross-side (and therefore cross-cost zones) load-balancing.

Cluster definition: “group of machines working together to transparently
provide enterprise services” (Kang, 2001)

3.3. Demarcation summary

Utility Computing can best be described as a business model for offering services within or to
organisations. A Grid could be one technology to build and offer UC-based services. With
Grid environments, however, “there is a fundamental gap between the technology and its
users” (De Roure et al., 2006). The targeted audience in this project are SMB. For this
audience the technology is still too complex and requires too much knowledge commonly not
available in-house. For more detailed description see (De Roure et al., 2006).

J2EE as standalone technology is not able to offer UC-based services. Solutions for service-
consumer billing or cross-side (cross-cost-domain) load-balancing are lacking within J2EE.

4. Definition of the basic elements of a UC network

4.1. Modelling properties and use cases

The goal for the model building is to at least fulfil the minimum requirements of Utility
Computing, which are service provision ‘on-demand’ and ‘pay-per-use’ billing. The targeted
properties are (currently excepted is the service transaction management):

 SOA service provision

 Extensive load-balancing

 Management of service quality

 Accounting

 Model complexity fitting for SMB
(service provision and consumption
side)

4.2. Underlying use cases and general conditions

The analyses of the functional requirements are based on the OGSA and GGF use cases
(Foster et al., 2004) (MacLaren et al., 2006) (Von Reich, 2004):

 Commercial Data Centre

 Grid Resource Resellers

 Inter Grid

 Resource Usage Service

 IT Infrastructure and Management

 Grid-based ASP for Business

 Grid Monitoring Architecture

Additionally, it is based on the main results of the EU GRASP project that aims to define an
infrastructure for Application Service Provision based on Grid technology (Dimitrakos et al.,
2004).

Complementing the basic requirements in the industry standard ITIL with focus on service
delivery best practices are incorporated. Also basic requirements from the CobiT (ISACA,
2005) framework are included.

4.3. Derived use cases for the model

Starting from the underlying use cases and general conditions brought together previously, the
following two use cases define the basic functional requirements the model should fulfil.
Aggregating the service delivery requirements and matching them against the predefined
goals for the model resulted in the subsequently-denoted use cases for UC service delivery
operation.

 Service consumption use case overview

 Discovery

 Brokering and load-balancing

 Orchestration

 Authentication and Authorisation

 Monitoring, Metering and
Accounting

 Fault Handling and Logging

 Corresponding Policies

 Service provision use case overview

 Data Access

 Provisioning

 Embedded legacy applications

 Synchronous and asynchronous
usage

 Administration

 Corresponding Policies

4.4. Elements derived from the model use cases

 Service type

The element represents a definition of a service class with distinctive business functionality
and a standardised public interface.

 Service instance

This represents an instance of a service type that can handle multiple service requests
simultaneously, and exists as a subset of a service host and applies SLA quotas. The element
supports standby, online and offline modes.

 Service host

The element represents a host for service instances that can only host one service instance of a
service type at a time.

 Service consumer

The consumer invokes service instances by sending service requests.

 Service request

A request is an invocation of a service initiated by a service consumer. The invocation always
includes the associated service response (synchronous or asynchronous).

 Service registry

The registry authenticates service consumers.

 Service broker

A broker authorises service requests, forwards service requests to the most suitable service
load-balancer or third-party service broker (with respect to SLA and cost calculations) and
creates service request bills (including third-party service type utilisation costs and SLA
violations).

 Service load-balancer

The load-balancer represents a physical location or a cost class. It queues service requests (if
necessary) and forwards service requests to most suitable service instances (with respect to
SLA). Also it deploys, activates, deactivates or removes service instances on service hosts as
necessary (e.g. for load-balancing or in case of failure).

 Service monitoring

This element monitors the SLAs per service request.

 Policies

These elements define the general conditions for brokering (per service consumer), error and
event handling (per service type) and additionally security conditions (per service consumer).

Information is stored near their creation or consumption location. Information is provided
directly through its storage location.

 Variations to the derived use cases for the model

Not incorporated in the element definition are the embedded legacy applications,
administration and policies areas of the service provision use case.

The orchestration of existing services into new services is indirectly supported through the
provision of new service types. This means that if you want to orchestrate existing service
types to new service types, you must build a new service type and as internal functionality
invoke and compose the existing services.

4.5. Workflows for the model

In workflow steps the ‘’ sign is read as ‘requests’ and marks a request track. Steps can be
marked as optional to the initially requesting instance. Steps marked as ‘TERMINATOR’ are
always executed at the end of any workflow, regardless of the workflow type (e.g. 1_SSC,
2_CoSC, 3_CaSC).

 1_SSC: Simple service consumption workflow

The following workflow describes the simplest possible service request in the model:

1) Service consumer  Service registry OPTIONAL

Authenticated service consumers can request service type information including cost
information and available service brokers.

2) Service consumer  Service broker  Service load-balancer  Service instance

Authenticated service consumers can send service requests using a service broker. In
response they get the service state and a request bill.

3) Service broker  Service registry

This step is invoked by step 2 and transmits the service consumer authentication data
and service type to get authorisation information and brokering policy.

4) Service load-balancer  Service monitoring  Service host

This step is invoked by step 2 and collects the service hosts load data.

5) Service instance  Service monitoring

This step is invoked by step 2 and reports the individual service request load during
processing and according events.

6) Service broker  Service monitoring TERMINATOR

This step is invoked by step 2 and closes a service request by reporting third-party
service usage information and the issued service bill to the monitoring service.

Figure 4: 1_SSC network view

 2_CoSC: Complex service consumption workflow

The workflow for complex service consumption expands the basic workflow for simple
service consumption [1_SSC]. It describes a more complex workflow within the model by
still providing a single service type.

7) Service broker  Service load-balancer

This step is invoked by step 2 and collects the service type utilisation information per
load-balancer.

Figure 5: 2_CoSC network view

 3_CaSC: Cascaded service consumption workflow

The workflow for cascaded service consumption expands the workflow for complex service
consumption [2_CoSC]. It describes a workflow that utilises an externally-provided service.

8) Service instance (local)  Service broker (local)  Service broker (third-party) 
Service load-balancer (third-party)  Service instance (third-party)

This step is invoked by step 2 and invokes a third-party service. The invoking instance
sends its service request enhanced with service consumer authentication data by the
service broker. In the responding data, the service request response and state are used
by the service instance. The request bill is extracted by the service broker.

9) Service broker (local)  Service broker (third-party)  Service monitoring (third-
party)

This step is invoked by step 8 and collects the service type utilisation information for
the third-party service.

Figure 6: 3_CaSC network view

 Service instances as service consumers

Why service instances should not invoke their embedded service calls directly: Service
instances need to act as service consumers, when they want to embed functionality provided
by other services. If service instances would call their embedded services directly, the system
would lose control over:

 Service provider changes

 Authentication changes

 Service billing

 Service load-balancing

With a centralised element as provided with the service broker, external service invocation
will be handled by the broker. This introduces a new implementation strategy for software
developers of service-oriented architectures.

4.6. Enhancements compared to plain SOA

The four main differences to service provision in basic service-oriented architectures are:

 Pay-per-use base, achieved through the optional usage of the service request bill

 Internal active SLA-control, achieved through the service type utilisation combined
with the service load-balancer

 External passive SLA-control, optionally achieved through the service type utilisation
combined with the service broker

 Centralised service consumption management, achieved through the service broker

Thus not only is the service provision managed through a central proxy-like instance,
but the service consumption is also managed centrally.

As an analogy, compare the evolved architecture with the IBM proposal for a utility
computing architecture in (Kloppmann et al., 2004).

5. Summary

This paper introduced Utility Computing as the on-demand service provision business model
for Service-oriented Architectures. As a trigger for the project, the question for a suitable UC
framework for small and medium-sized businesses was raised. Subsequently, a technology-
independent, UC-conform service provisioning model was claimed as a precondition to
answer this question.

The paper goes on to expresses the need to characterise the behaviour of meshed services and
the necessity to provide room for resource prediction in UC networks. As a suitable solution,
a simulation framework based on the previously demanded UC model is described.

To distinguish Utility Computing clearly from technologies such as Grid or J2EE these terms
are defined and demarcated. The conceptual approach for the project is explained and the first
steps towards a technology-abstracted UC model are presented. The gathering of the basic
network elements including the general conditions for the network, its developed uses cases,
the derived network elements and the appropriate workflows are introduced.

Based on these results, the project will now start to build a complete UC model as a
precondition for the simulation phase of the project.

References
Abraham Kang, 08/03/01. J2EE clustering, Part 1. JavaWorld.com

Araki, T. 2004. Autonomic WWW server management with distributed resources. In Proceedings of the 2nd
Workshop on Middleware For Grid Computing (Toronto, Ontario, Canada, October 18 - 22, 2004). MGC '04,
vol. 76. ACM Press, New York, NY, 81-86.

C. Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, Rebekah Metz, Booz Allen Hamilton,
2006. Reference Model for Service Oriented Architecture 1.0. OASIS Committee Specification 1,
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm.

Chair: K. Jeffery; Editor-in-Chief: D. De Roure, 2006. Future for European Grids: GRIDs and Service Oriented
Knowledge Utilities. European Commission, published in January 2006.

Chee Shin Yeo, Marcos Dias de Assunção, Jia Yu, Anthony Sulistio, Srikumar Venugopal, Martin Placek, and
Rajkumar Buyya, Utility Computing on Global Grids, Hossein Bidgoli (ed), The Handbook of Computer
Networks, John Wiley & Sons, New York, USA, accepted in April 2006 and in print.

David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris Ferris, David Orchard,
2004. Web Services Architecture. W3C Working Group Note 11, http://www.w3.org/TR/ws-arch/.

Foster, I. and Tuecke, S. 2005. Describing the elephant: the different faces of IT as service. Queue 3, 6 (Jul.
2005), 26-29.

Foster, I. Kesselman, C. Nick, J.M. Tuecke, S., 2002. Grid services for distributed system integration.
Computer, Volume 35, Issue 6, June 2002 Page(s):37 – 46

I. Foster, D. Gannon, H. Kishimoto, Jeffrin J. Von Reich, 2004. Open Grid Services Architecture Use Cases.
GGF, http://www.ggf.org/documents/GFD.29.pdf.

Ian Foster, 2002. What is the Grid? A Three Point Checklist. Argonne National Laboratory & University of
Chicago.

Ian Foster, Carl Kesselmann, 2004. The Grid 2 – Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers.

ISACA, 2005. COBIT 4.0. Printed in the United States of America, 2005. ISBN 1-933284-37-4

J. MacLaren, S. Newhouse, T. Haupt, K. Keahey, W. Lee, 2006. Grid Economy Use Cases. GGF,
http://www.ggf.org/documents/GFD.60.pdf.

Jeffrin J. Von Reich, 2004. Open Grid Services Architecture: Second Tier Use Cases. OGSA-WG GGF,
http://forge.gridforum.org/sf/docman/do/downloadDocument/projects.ogsa-
wg/docman.root.published_documents.use_cases_1_0/doc13574.

M. Kloppmann, D. Konig, F. Leymann, G. Pfau, D. Roller, 2004. Business process choreography in WebSphere:
Combining the power of BPEL and J2EE. IBM Systems Journal, Volume 43 Issue 2.

Munindar P. Singh, Michael, N. Huhns, 2005. Service Oriented Computing Semantics, Process, Agents. Hrsg:
John Wiley & Sons.

Rappa, M. A. 2004. The utility business model and the future of computing services. IBM Syst. J. 43, 1 (Jan.
2004), 32-42.

Simplified Guide to J2EE, 1999. Sun Microsystems, Inc.

T. Dimitrakos, D. Mac Randal, S. Wesner, B. Serhan, P. Ritrovato, G. Laria, 2004. Overview of an architecture
enabling Grid based Application Service Provision. AxGrid '04 , Nicosia, 28-30 January, 2004.

UTILITY COMPUTING SIMULATION

Benjamin Heckmann
Ingo Stengel

Günter Turetschek
University of Applied Sciences Darmstadt

Haardtring 100
D-64295 Darmstadt, Germany

E-mail: benjamin.heckmann@gmx.de

Andy Phippen
University of Plymouth

Room 405a, Cookworthy Building, Drake Circus
Plymouth, Devon, PL4 8AA, UK

KEYWORDS

SaaS, Cloud Computing, SOA, Service Billing, Service
Provision, QoS

ABSTRACT

Utility Computing (UC) misses an explicit definition of the
core relation between IT resource utilisation, its total costs
and service prices. Additionally, the implications of
complex usage scenarios occurring in UC have not been
examined for the service operations lifecycle. Missing
those, UC service offers fail in: prediction of resource
utilisation and dependent operational costs prediction,
calculation of subsequent price scales, and subsequent
runtime gross price calculations.

In this paper a strategy to handle UC’s complexity
proposing a simulation model to support each step in the
service operations lifecycle is presented. The
implementation approach for the model is based on
OMNeT++. First simulation outcomes are presented.

INTRODUCTION

This paper starts with a short definition of the term Utility
Computing as a business model. Afterwards a common
Service Operations Lifecycle is defined that has been
derived from ITIL. After setting the context, the research
objectives and the related research approach are introduced.
Subsequent the evolved strategy that is able to handle UC’s
complexity is outlined. This strategy includes the demand
for an UC provisioning model and a corresponding
simulation model. Both models and the implementation of
the simulation of the UC provisioning model are
introduced. First outcomes of simulation runs are shown.
Corresponding conclusions and further works are discussed.

UTILITY COMPUTING

This work is focused on the modelling and simulation of
service usage in the context of Utility Computing (UC).
The term utility thereby refers to the field of industry. Here
a public utility (Encyclopaedia Britannica, 2008) describes
an enterprise that provides certain classes of services to a
wide range of consumers.

The name Utility Computing indicates the vision of IT-
based services comparable to public utilities. In this work
Utility Computing is defined as a business model (Weill,

2001) for service providers offering IT-based services and
charging service consumers per usage, according to (Rappa,
2004). From the provider’s IT perspective UC is about
service provision that is able to scale dynamically,
according to real-time fluctuations in demand (Bunker et
al., 2006). Additionally, UC service provision offers its
services equipped with the ability to charge service
consumption per use (Neel, 2002).

From a consumer’s perspective UC is related to “the
reduction of IT-related operational costs and complexity”
(Yeo et al., 2006). Both perspectives, provision and
consumption, have in common to target a better utilisation
of generally underutilised IT resources (Andrzejak et al.,
2002) on both sides. In summary, UC implicitly claims an
abstract description how IT resource utilisation, its total
costs and service prices relate (see Figure 1).

Figure 1: UC’s resource – cost – price relation

Thereby Utility Computing does not refer to a specific IT
service definition. From a business perspective any service
that economically makes sense to be charged by its usage is
addressed by UC. Therefore a more abstract service
definition will be the most suitable for UC: A service
represents a type of relationship-based interaction between
a service provider and a service consumer to achieve a
certain solution objective. (Zhang et al., 2007) This
definition considers the definitions of (Fitzsimmons et al.,
2006) from the economics perspective and (Gronroos,
2000) from the marketing perspective. From a technical
perspective there are several types of services that fit into
this definition, e.g. SOAP web services, HTTP web servers
or Xen virtual infrastructures.

SERVICE OPERATIONS LIFECYCLE

In the context of Utility Computing service provision a
lightweight definition of a service lifecycle is necessary to
obtain an overview of lifecycle stakeholders and basic
activities relevant for service provision. As a basis for the
definition of a lifecycle in this work, the basic lifecycle

described in (Zhang et al., 2007) and the aggregation of the
ITIL v3 service lifecycle described in (Beard, 2008) are
used. Both descriptions can be aggregated to the three main
lifecycle phases: Service business planning, service
development and service operations.

The lifecycle phase of service business planning is
addressing service strategy and service engagement to
implement a business model. In classical IT business
models, not based on the vision of UC, IT resource
utilisation, its total costs and service prices only relate
indirectly (see economical model in Figure 2).

During service development the service lifecycle is
responsible for the design and implementation of services.
This phase also includes the transition process from an
implemented service to a deployed, ready for operations
service. The phase service operations focuses on the
provision of services. This addresses effectiveness and
efficiency in delivery and support of services.

RESEARCH OBJECTIVES

The overall context of this work focuses on specific aspects
of the service operations lifecycle (SOL) for service offers
based on the business model of Utility Computing. In the
phase of service business planning this work refers to the
corresponding service properties and service usage profiles
resulting from the previous UC definition. During service
development and the phase of service operations this work
will focus on services in the technical context of Service-
oriented Computing (SOC) (Papazoglou, 2003) consistent
to the paradigm of Cloud Computing as described by (Boss
et al., 2007).

In this context a description of the modifications necessary
to transfer a standard service operations lifecycle into a UC
SOL is missing. This includes the demand for an explicit
definition of UC’s core relation between IT resource
utilisation, its total costs and service prices. Also specific
attention must be given to the implications of complex UC
usage scenarios.

The unidentified implications of complex UC usage
scenarios, considerably compromise the planning,
development and operation of UC service offers. Under
these conditions the prediction of resource utilisation and
dependent operational costs prediction, calculation of
subsequent price scales, and subsequent runtime gross price
calculations will fail.

RESEARCH APPROACH

The overall work starts from the business perspective, as
technical requirements depend on the business requirements
imposed. Therefore, a five step approach to find solutions
for the specified objectives is proposed:

(1) Describe the current state of service usage in the
context of Utility Computing.

(2) Elaborate a detailed definition for the relation
between a service and its consumer.

(3) Analyse the SOL of UC services.

(4) Determine the implications of complex UC usage
scenarios regarding SOL.

(5) Deduct a corresponding strategy to handle the
complexity.

This paper focuses on the simulation of the UC model
developed as part of the overall work. The simulation, as
well as the UC model, is part of the developed strategy to
handle the complexity of UC usage scenarios.

STRATEGY TO HANDLE UC’S
COMPLEXITY

The overall work analyses the SOL to identify where
modifications allow an optimised support for UC scenarios.
Beginning with the phase of service business planning, the
classical relation between resource utilisation, costs and
prices is examined. Advanced relations for service
provision in UC were elaborated as show in Figure 2. The
relation marked with [A] adds a runtime relation between

Figure 2: UC relations in the business planning

the current usage and the gross price calculation that is
essential to offer pay-per-use in UC scenarios. Beside this,
service providers have to deal with complex usage
scenarios, added by relation [B]. To enable the direct
relation [A], constraints for UC service provision are
necessary. These constraints must describe the requirements
to enable this relation during service development and
operation.

In the service development phase of the service lifecycle,
new data including Usage Patterns specific for on-demand
IT infrastructures need to be integrated into the
development process (Mendoza, 2007) to improve service
quality (Heckmann, 2009). To support the planning of
framework architectures or the selection of framework
implementations, the definition of relevant UC service
provision constraints is necessary.

In the service operations phase, there are no adequate tools
to evaluate service interdependencies between all hosted
services. Also the Service Level Agreement (SLA)
interactions between all hosted services cannot be
estimated. Nor the resource planning for services to ensure
contracted service levels, respecting resource consumption
of other services hosted on shared resources, cannot be
analysed without adequate tools for complex UC scenarios.

As a result, of the analyses of the service operations
lifecycle, four major strategies for the reduction of the
complexity of UC service provision can be identified:

• Define UC constraints for service architectures

• Enable the analysis of service interdependencies
on development and operations level

• Permit the analysis of SLA interactions and
resource prediction

• Support the proof of price scales

To implement these modifications the development of a
technology-agnostic UC service provision model and a

corresponding technology-abstracted UC simulation
environment is proposed. See Figure 3 for a detailed
overview of all previously addressed relations.

UC MODEL

As the previous strategy suggests, the overall work defined
a technology-agnostic UC model (Heckmann, 2007). In
summary the model consists of eleven abstract elements,
logically grouping demanded functionalities, and three
basic workflows, which describe the minimum demanded
interaction of those elements.

The abstract elements are consumer groups requesting
services with a certain member count, request frequency
and characteristics, a broker to forward requests according
to costs aspects, a load-balancer to forward respecting load
aspects of a request, a host offering resources such as
computing cycles, memory, storage and network, and
service instances consuming offered resources.
Additionally some elements to organise service provision: a
registry, monitoring, and a service type element. In a
derived technical IT architecture these functional groups
can be represented as standalone components, but could
also be combined in joint architectural elements. As basic
workflows a simple service consumption workflow, a
complex service consumption workflow, and a cascaded
service consumption workflow where defined.

Other models in this context have been proposed by
(Mendoza, 2007), (Zhang et al., 2007) or (Bunker et al.,
2006). The model of Bunker and Thomson is the most
inadequate of them, since it provides too few details to be
helpful for IT architects to design a suitable UC architecture
for a specific service provision scenario. The model
delivers only a quick overall IT strategy to the provision of
UC-based services. The UC model by Zhang, Zhang and
Cai was developed from a business management
perspective. It specifically aims to the provision of SOAP-
based web services and describes in detail how those should
be provided. While the model of Mendoza uses a very
efficient model building approach, starting from a

Figure 3: UC relations in service development and operations

technological perspective. Both of the afore mentioned
models are very complex and technology-dependent.
Therefore a custom model building was conducted,
targeting a lightweight technology-agnostic solution.

SIMULATION MODEL

The simulation model represents a multi-tier architecture
(see Figure 4) for the UC-conform provision of services in
service-oriented computing. The functionalities described
in the UC model have been transformed into the simulation
model that implements this architecture. The current
implementation is capable to simulate:

• Complex user behaviour (user group): Messages
can be sent with random or fixed timeslots to
control the amount of messages arriving at the
broker. The resource consumption for transport
and processing of the embedded service request
can be determined separately. It is also possible to
configure transport priorities. Each service request
can include a free number of subrequests to
represent service cascades.

• Resource measurement and monitoring for
computing cycles, memory and disk space: The
hardware resources simulated and monitored are
computing cycles, memory and disk space.
Network traffic (bandwidth and delay) is currently
not monitored, but simulated. Additionally
monitored are the load-balancer and broker queues
and their message transport resource consumption.
The overall resource consumption for the storage
network is also traced.

• Message billing to service consumers (broker): To
each request response a bill based on the
processing sites computing cycles, memory and

storage costs will be attached. The consumption of
these resources during processing of the request is
billed, and it is possible to add additional per site
and per consumer margins.

• Message routing by site costs (broker): Messages
get routed to a site with enough resources to
process the request and the least costs for
processing.

• Message routing by resource demand (load-
balancer): Messages are routed by a site’s load-
balancer to a host with enough resources.

• Message queuing (broker & load-balancer):
Messages are temporarily stored within the service
broker or service load-balancer when not enough
resources for their processing are available. They
are recalled from queue after a certain scheduling
time and entered again in the scheduling sequence
of either the service broker or the service load-
balancer. In doing so the queuing consumes
resources in the system, and if the system balancer
runs out of resources, incoming messages are
dropped.

The simulation model is implemented based on the discrete
event simulation environment OMNeT++ (Varga, 2001).
For each simulation run it is possible to determine the
number of user groups requesting services. It is possible to
vary the total number of group members, the behaviour
timing as well as the type of request in meanings of service
type and request complexity individually per user group. It
is possible to specify any service type and any number of
service providers. Each provider may have several sites
with any number of hosts. Each host can be individually
equipped with computing power, memory and storage.
Additionally each site has access to a storage network to

Figure 4: Simulation model as multi-tier architecture

estimate storage network loads. For each user group and
service provider the price relation to each service type can
be individually adapted. This highly flexible configuration
targets the necessity to represent complex UC scenarios.

FIRST OUTCOMES

The largest test scenario currently simulated represents a
virtual travel booking processor with 2770 consumers in
five groups, each sending a single request of the same
service type including two subrequests to external service
providers. Thereby each request’s initialisation is randomly
scheduled within a given timeframe. As outcome of each
simulation run a data pool consisting of all values stated in
the resource measurement and monitoring definition of the
simulation model is provided. As examples for graphs
based on parts of the outcomes, in Figure 4 the
consumption of computing cycles characterised as the CPU
utilisation is shown for the TravelX broker, a load-balancer
and a host. The host’s graph also shows the memory
(MEM) and disk space (HDD) utilisation on the
contemplated host.

Additionally to simulation runs testing a large amount of
concurrent users, the implementation showed that it is able
to simulate the behaviour of highly meshed service
cascades. Even if it comes to special cases like looping
service requests, where subrequest providers themselves
use services provided by the original subrequest initiator.

Or in case of internal subrequests occurring, where the
provision of a service involves requests to other internally
provided services.

CONCLUSIONS AND FURTHER WORK

This paper identifies the modifications necessary to transfer
the standard SOL into a UC SOL. As part of the presented
strategy to handle UC’s complexity a simulation model is
introduced. First tests of this simulation model have shown
that it is possible to represent complex scenarios. The
prediction of resource utilisation, dependent operational
costs and subsequent runtime gross prices has been shown
in virtual scenarios. Further the simulation model mustbe
validated analysing real world scenarios. The main aspect
for adequate representation of the service’s behaviour will
be the calibration of the simulation runs to reflect the
current resource consumption of service requests. Here
further research has to be conducted.

Also part of future research must be the documentation of
theoretical aspects of the simulation model building. This
includes the relation between discrete event simulation and
queuing concepts from queuing theory, the revision of
relevant probability topics and the relevant background in
stochastic processes.

It is assumed that the technology-abstracted simulation
model can also be used for the simulation of RESTful or
simple services, such as web servers. Here further research
will be conducted.

BIOGRAPHIES

Benjamin Heckmann is a researcher at the aiDa research
center in Dieburg and PhD student at the University of
Plymouth, UK. He holds a M.Sc. in computer science. His
research interests are in the areas of Utility Computing,
Cloud Computing, Unified Communications and IT-
Security.

Ingo Stengel graduated at the Cork Institute of Technology,
Ireland. He is co-founder and Executive Director of the
igdv-Centre for Advanced Learning, Media and Simulation
at the University of Applied Sciences Darmstadt. His
research interests are in the area of Multiagent-Systems,
Simulation Software, IT-Security and Advanced Learning.

Andy Phippen received his PhD in the year 2001. He is
Senior Lecturer in Business Enterprise and Ethics at the
University of Plymouth. His research focuses on the impact
of software development and learning & teaching in higher
education. Further, he is the director of the IT liaison at the
University of Plymouth.

Günter Turetschek is Professor for computer science at the
University of Applied Sciences Darmstadt; co-founder and
director of the Institute for Applied Informatics Darmstadt
(aiDa). His research interests are in the area of Business
Computing, Unified Communications and Utility
Computing.

REFERENCES

Andrzejak, A., J. Rolia and M. Arlitt. 2002. “Bounding Resource
Savings of Utility Computing Models”. HP Labs Technical
Report HPL-2002-339.

Beard, H. 2008. Cloud Computing Best Practices for Managing
and Measuring Processes for On-Demand Computing,
Applications and Data Centers in the Cloud with Slas. Emereo
Pty Ltd.

Boss, G., P. Malladi, D. Quan, L. Legregni and H. Hall. 2007.
“Cloud computing”. IBM, developerWorks, WebSphere, High
Performance On Demand Solutions.

Bunker, G.; and D. Thompson. 2006. Delivering Utility
Computing: Business-driven IT Optimization. John Wiley &
Sons.

Encyclopaedia Britannica, 2008. public utility. In Encyclopaedia
Britannica Online, retrieved December, 2008.

Fitzsimmons, J.A.; and M.J. Fitzsimmons. 2006. Service
Management: Operations, Strategy, and Information
Technology. 5th Ed., Irwin/McGraw-Hill, Homewood, IL.

Gronroos, C. 2000. Service Management and Marketing: A
Customer Relationship Management Approach. John Wiley &
Sons.

Heckmann, B. 2007. “Service provision in a utility computing
environment”. SEIN 2007, University of Plymouth, 14-15
June 2007.

Heckmann, B. 2009. “Technology-agnostic definition of the
Utility Computing service operations lifecycle”. Transfer
Report, University of Plymouth, April 2009.

Mendoza, A., 2007. Utility Computing Technologies, Standards,
and Strategies. Artech House Inc.

Neel, D. 2002. “The Utility Computing Promise”. InfoWorld,
April 12, 2002.

Papazoglou, M.P. 2003. “Service-oriented computing: concepts,
characteristics and directions”. Web Information Systems

Engineering, 2003. WISE 2003. Proceedings of the Fourth
International Conference on 10-12 Dec. 2003 Page(s):3 – 12.

Rappa, M.A. 2004. “The utility business model and the future of
computing services”. IBM Syst. J. 43, 1 (Jan. 2004), 32-42.

Yeo, C.S., M.D. Assunção, J. Yu, A. Sulistio, S. Venugopal, M.
Placek and R. Buyya. 2006. “Utility Computing on Global
Grids”. Hossein Bidgoli (ed), The Handbook of Computer
Networks, John Wiley & Sons, New York, USA, accepted in
April 2006 and in print.

Varga, A. 1997. “Flexible topology description language for
simulation programs”. Simulation in industry: 9th European
Simulation Symposium 1997:225-229.

Varga, A. 2001. “The OMNeT++ Discrete Event Simulation
System”. In the Proceedings of the European Simulation
Multiconference (ESM'2001). June 6-9, 2001. Prague, Czech
Republic.

Weill, P. and M.R. Vitale. 2001. “Place to space: Migrating to
eBusiness Models”. Boston, Harvard Business School Press.

Zhang, L.-J.; J. Zhang; and H. Cai. 2007. Services Computing,
Core Enabling Technology of the Modern Services Industry.
published by Springer and Tsinghua University Press.

