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Abstract 
A non-linear isotropic finite element model of an elastic arterial wall is developed within the 
ANSYS commercial software package. While progressively increasing complexity of the 
model, it is validated with analytical theory. Geometric nonlinearity is investigated and an 
iterative convergence method for the calculation of a solution-dependent axial force, which 
increases with artery deformation, is presented. 
 
Neo-Hookean hyperelastic material models are fitted to existing uniaxial, biaxial, and shear 
experimental data from literature for both rubber and polyurethane elastomer to introduce 
material nonlinearity into the arterial wall model. A mesh independence study was performed 
to determine a suitable mesh and the elastomer materials were simulated, with the resulting 
pressure-diameter responses compared to a real artery. 
 
Finally, the arterial wall model was fitted to existing experimental results for a rat carotid 
artery and a human subclavian artery, and the mechanical responses were compared. It was 
found that the model simulated the behaviour of the rat carotid artery well for up to 15% 
diametral strain with a root-mean-square error (RMSE) of 0.43 mm Hg. For the human 
subclavian artery model, the behaviour did not match well, with the pressure-diameter 
response diverging from the real artery after 2% diametral strain. However, it had a RMSE of 
0.94 mm Hg below 2% diametral strain. Recommendations for further investigation are made 
to improve the model. 
 
Keywords: Arterial walls, artery, carotid artery, elastomer, finite element analysis, geometric 
nonlinearity, hyperelastic, isotropic, large deflection, material model, neo-Hookean, non-
linear, solution-dependent axial force, subclavian artery, validation 
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Introduction 
Arterial walls are predominately made up of the materials elastin, collagen, and 
smooth muscle. The mechanical structure and properties of these materials 
determines an artery’s mechanical behaviour. There is significant interest in the 
properties and behaviours of arteries, due the benefits this knowledge can bring for 
surgical procedures (Sommer et al., 2018). 
 
Elastic arteries play an important role in the circulatory system by storing elastic 
energy during cardiac systole, which is when the heart contracts and ejects blood 
into the elastic arteries. During cardiac diastole, which is when the heart’s ventricles 
relax, elastic arteries recoil and release the stored energy and keeps the blood 
flowing (Patton & Thibodeau, 2010; Tortora & Derrickson, 2009). Because the heart 
pumps in cycles, flow is pulsatile in the arterial system (Boron & Boulpaep, 2017). 
The compliance of arteries allows the blood pressure to remain relatively constant 
despite the pulsatile flow and reduces the pressure pulsations to almost zero by the 
time the blood reaches the capillaries (Hall, 2015). 
 
Models of arterial walls have become much more complex as arterial mechanics has 
developed and easily go beyond what is possible within commercial software and 
typically involve non-standard finite element codes (Kalita & Schaefer, 2008). Finite 
Element Analysis (FEA) is a method to numerically solve the structural governing 
equations by discretising the model as finite elements in a matrix (Hearn, 1997a). 
These elements make up a mesh of the model. This paper is focused on modelling a 
section of arterial wall within the ANSYS 2020 R2 student commercial software. 

Aim 
The aim is to develop a model of an elastic arterial wall within a commercial finite 
element code, simulate the mechanical response with different internal pressures, 
and compare results with those from experiments in relevant literature. 

Objectives 
1. Conduct a literature review to understand the material structure and 

mechanical properties and behaviours of arterial walls, the material 
mechanics of cylinders, and to review existing studies and models of 
arterial walls. 

2. Starting with basic assumptions like a thin-walled cylinder, develop a finite 
element model of a section of artery within a commercial finite element 
code and progressively add complexity. 

3. Conduct appropriate validation cases to ensure the relevant mechanics is 
simulated correctly. 

4. Simulate mechanical behaviour when subjected to similar loads as those 
in experiments in literature and compare results. 
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Literature Review 
This section gives an overview of the relevant literature that one needs to be aware 
of to understand the research. 

Material Structure of an Elastic Artery 
There are generally two types of arteries: elastic and muscular (Holzapfel, Gasser & 
Ogden, 2000). Arteries consist of 3 layers: the tunica intima, the tunica media, and 
the tunica externa. 

Tunica intima 
The tunica intima is the inner layer of an artery and consists of three components: 
the endothelium, the basement membrane, and the internal elastic lamina. Tortora & 
Derrickson (2009) state that the endothelium is a thin layer of flattened endothelial 
cells that lines the lumen of the cardiovascular system. Marieb & Hoehn (2015) 
describe the lumen as the ‘blood-containing space’ of a blood vessel. The 
endothelium is supported by a basement membrane, which consists of a framework 
of collagen fibres (Tortora & Derrickson, 2009). Other literature, like Marieb & Hoehn 
(2015), refer to this layer as the subendothelial layer. Tortora & Derrickson (2009) 
continues to explain that an internal elastic lamina forms the boundary with the 
tunica media, which is a thin layer of elastic fibres with openings, allowing diffusion 
between the intima and media. 
 
Burton (1954) suggests that the contribution of the endothelial lining to the 
mechanical properties of arteries can be ignored. Holzapfel, Gasser & Ogden (2000) 
suggest that the entire intima layer’s contribution to the mechanical properties of 
arteries is insignificant in healthy young people, due to being very thin.  However, 
Holzapfel et al. warns that the intima’s mechanical properties can become significant 
with age due to arteriosclerosis. Arteriosclerosis is a type of vascular disease that 
thickens and hardens the arterial wall, causing a reduction in the lumen size (Patton 
& Thibodeau, 2010). 

Tunica media 
The tunica media is the middle and thickest layer of an artery. It is comprised of 
smooth muscle, elastin and collagen fibrils, and an external elastic lamina (Holzapfel, 
Gasser & Ogden, 2000; Marieb & Hoehn, 2015). The tunica media layer varies the 
most across the different vessel types (Tortora & Derrickson, 2009). 
 
For elastic arteries, the elastic fibres in the media are responsible for the recoil of the 
vessel after distention, Patton & Thibodeau (2010) explain. The smooth muscle 
controls the diameter of vessels through vasoconstriction or vasodilation (decrease 
or increase in lumen diameter respectively) but is relatively inactive in elastic arteries 
(Marieb & Hoehn, 2015). Tortora & Derrickson (2009) state that the internal and 
external elastic laminae are well-defined for this type of vessel. Sheets of elastin are 
concentrically layered with smooth muscle in elastic arteries (Marieb & Hoehn, 
2015). Tortora & Derrickson (2009) refer to these sheets of elastin as the elastic 
lamella. Due to their similarity, the internal and external elastic laminae are ‘hardly 
distinguishable’ from the elastic lamella (Holzapfel, Gasser & Ogden, 2000). 
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Tunica externa 
The tunica externa (also called the tunica adventitia) is the outer layer of a blood 
vessel. Marieb & Hoehn (2015) explain that it’s mostly composed of loosely woven 
collagen fibres. In larger vessels, the tunica externa has its own blood vessels called 
the vasa vasorum, which means vessels to the vessels (Tortora & Derrickson, 2009). 
Nerve fibres and lymphatic vessels are also present. Patton & Thibodeau (2010) 
state that collagen fibres extend outwards from the tunica externa and connect to 
nearby structures, which anchors the blood vessel and keeps it open. 

Mechanical Behaviours 
As discussed in the previous section, there are three main materials that make up an 
elastic artery’s tunica media and externa layers: elastic fibres, smooth muscle, and 
collagen fibres. Due to the amount and structure of these materials, arteries have 
complex mechanical behaviours. 
 
The elastic behaviour of an artery is due to its elastic fibres. Patton & Thibodeau 
(2010) explain that elastic fibres are composed of elastin, which is a protein polymer, 
and form a highly elastic network that can achieve 100% strains. Holzapfel, Gasser 
& Stadler (2002) suggest that the smooth muscle cells in the tunica media are 
responsible for the viscoelastic behaviour of arteries. They also state that 
viscoelastic behaviour is less pronounced in larger arteries. As previously discussed, 
the smooth muscle in elastic arteries is relatively inactive. In conclusion, elastic 
arteries have a mostly passive mechanical behaviour and due to its relatively large 
size, it has a less pronounced viscoelastic behaviour. 
 
Arteries have a non-linear behaviour due to its wavy collagen fibrils (Holzapfel, 
Gasser & Ogden, 2000). Collagen fibres are woven together to strengthen the 
arterial wall and keep the lumen open (Patton & Thibodeau, 2010). They do not 
strain above 2 or 3 percent. Although they are stiff in extension, they are also flexible 
(Patton & Thibodeau, 2010). When not under load, the collagen fibres are slack and 
wavy and thus do not contribute much to an artery’s stiffness, Holzapfel, Gasser & 
Ogden (2000) explain. When the artery is loaded, collagen fibres are straightened, 
which increases the vessel’s stiffness as more fibres are progressively recruited, 
protecting the vessel from rupturing (Holzapfel, Gasser & Ogden, 2000). As a result, 
the arterial stiffness is dominated by the elastic fibres at small loads, whereas it’s 
dominated by collagen fibres at larger loads (Mozafari, Zhou & Gu, 2019). Burton 
(1954) suggests that the elastic fibres are responsible for producing maintenance 
tension against physiological blood pressures whereas the collagenous fibres have a 
protective supporting role. 
 
Patel & Fry (1969) show that the arterial wall can be considered as cylindrically 
orthotopic. Holzapfel, Gasser & Stadler (2002) have stated that this assumption has 
been generally accepted and used by literature. 
 
The arterial wall is pretty much incompressible within physiological loads and 
deformations (Holzapfel, Gasser & Ogden, 2000; Kalita & Schaefer, 2008). Kalita & 
Schaefer refer to the findings of Chuong & Fung (1984), which shows a maximum 
wall volume change of 1.26% when under a radial compression of 10 kPa (75 
mmHg). The deformation of an incompressible material is isochoric, which means 
that there are no volume changes (Holzapfel & Gasser, 2007). Gasser, Ogden & 
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Holzapfel (2006) state that, although an artery is classified as a mixture composite, it 
can be regarded as a homogenised solid for most studies of stress distribution. 
 
Kyriakides & Yu-Chung (1991) explains that an elastic cylindrical tube experiences 
instability under large deformation and develops a local bulge that propagates 
axially. Burton (1954) analytically showed that there is a specific pressure at which a 
cylindrical vessel would experience a blow-out where the volume distensibility 
becomes infinite. 

Material Mechanics of Cylinders 

When a cylinder is subjected to internal pressure, three perpendicular principle 
stresses are set up in the wall, which are called the hoop, radial, and longitudinal 
stresses (Hearn, 1997b). Roark (2000) explains that if the cylinder walls are 
relatively thin, then the hoop and longitudinal stresses are practically uniform across 
the thickness of the wall and the radial stress and any bending stresses are 
negligible. Hearn (1997b) explains that the wall thickness should be less than 1/20th 
the diameter to be considered thin. He derives the following equations for hoop and 
longitudinal stresses. The longitudinal stress equation applies if there are end plates. 
 

𝜎𝐻 =
𝑝𝑑

2𝑡
 (1)  𝜎𝐿 =

𝑝𝑑

4𝑡
 (2) 

 
For cylinders with a wall thickness greater than 1/20th the diameter, the hoop and 
longitudinal stresses are not uniform across the wall and the radial stress is no 
longer negligible (Roark, 2000). Hearn (1997b) gives the equations below for a thick-
walled cylinder. 
 

 
Equations (3-4) are the Lamé equations for thick-walled cylinders, where constants A 
and B are to be determined from boundary conditions (Hearn, 1997b). Equations (5-
6) are the hoop and radial stresses when the cylinder is subject to internal pressure 
only. Hearn (1997b) derived these from equations (3-4) with the following boundary 
conditions: at 𝑟 = 𝑅1, 𝜎𝑟 = −𝑝 and at 𝑟 = 𝑅2, 𝜎𝑟 = 0 (Hearn, 1997b). Equation (7) is 
the longitudinal stress when there are end plates, which can be used for the cases of 
internal pressure only or both internal and external pressures. Equation (8) is the 
strain formula. 
 

𝜎𝐻 = 𝐴 +
𝐵

𝑟2
 (3)  𝜎𝑟 = 𝐴 −

𝐵

𝑟2
 (4) 

𝜎𝐻 = 𝑝 [
(

𝑅2
𝑟

)
2

+ 1

𝑘2 − 1
] (5)  𝜎𝑟 = −𝑝 [

(
𝑅2
𝑟

)
2

− 1

𝑘2 − 1
] (6) 

𝜎𝐿 =
𝑝1𝑅1

2 − 𝑝2𝑅2
2

𝑅2
2 − 𝑅1

2  (7)   𝜀𝐻 =
1

𝐸
(𝜎𝐻 − 𝜈𝜎𝑟 − 𝜈𝜎𝐿) (8) 

𝑊ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 

𝐷2/𝐷1 = 𝑅2/𝑅1 
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Hearn (1997b) describes an isotropic material as one that ‘exhibits uniform 
properties throughout in all directions’ with the opposite being anisotropic. 
Orthotropic materials have different properties in different planes (Hearn, 1997b). For 
a cylindrically orthotropic material, there are three independent elastic moduli in the 
circumferential, longitudinal, and radial directions, Patel & Fry (1969) explain. 
 
Hearn (1997b) explains that when a simple bar is loaded longitudinally and within the 
elastic range, lateral strains are induced. This is represented in equation (9) by 
Poisson’s ratio of lateral strain to longitudinal strain (Hearn, 1997b): 
 
 

𝜈 =
−𝛿𝑑/𝑑

𝛿𝐿/𝐿
 (9) 

 

Elastomeric Materials and Hyperelastic Modelling 
Elastomers have a strongly non-linear stress-strain relation known as hyperelasticity 
and exhibit large strains (Sasso et al., 2008). Sasso et al. explain that hyperelastic 
material behaviour can be characterised by constitutive models, which can be fitted 
to experimental data to determine material parameters. Ogden explains that “an 
elastic material for which a strain-energy function exists is called a Green elastic or 
hyperelastic material’ (Ogden, 1984, p.206). Hyperelastic models are defined by this 
strain-energy function, which measures the amount of energy stored in the material 
due to deformation (Sasso et al., 2008). 
 
Marckmann & Verron (2006) evaluated and compared the ability of hyperelastic 
models to reproduce behaviours of elastomers. With a single material parameter, the 
neo-Hookean constitutive equation is the simplest physically-founded model and 
they suggest that it should be used for strains below 150%. Marckmann & Verron 
explain that it’s derived from molecular chain statistics considerations. 
 
ANSYS Workbench provides hyperelastic material models which are isotropic and 
constant with respect to temperature and are assumed to be nearly or purely 
incompressible. Its neo-Hookean model is one of them: 
 
 

 𝑊 =
𝜇

2
(𝐼1̅ − 3) +

1

𝑑
(𝐽 − 1)2 (ANSYS Inc, 2011) (10) 

 
Where: 
𝑊 = strain energy per unit reference volume 

𝐼1̅ = first deviatoric strain invariant 

𝜇 = initial shear modulus of the material 

𝑑 = material incompressibility parameter 
𝐽 = determinant of the elastic deformation gradient F 

 
There are papers that propose custom models, but the implementation of these 
would require coding custom material models into ANSYS Mechanical APDL, which 
is outside the scope of this paper. Examples of constitutive models are Holzapfel, 



The Plymouth Student Scientist, 2021, 14, (2), 253-278 

 

259 

 

Gasser & Ogden (2000), Demiray & Vito (1991), and von Maltzahn, Besdo & Wiemer 
(1981). 
 
For the investigation of hyperelasticity in this paper, two elastomers are considered. 
Treloar (1944) performed experiments on vulcanised rubber. The uniaxial and biaxial 
extension and shear test data has been compiled by Anssari-Benam & Bucchi 
(2021), who used the data to test how well their proposed neo-Hookean strain 
energy function modelled large deformations of incompressible elastomeric 
materials. Kanyanta & Ivankovic (2010) investigated the behaviour of polyurethane 
elastomer with variations in temperature, humidity, and strain rate and performed 
mechanical tests. The test data for both the rubber and polyurethane elastomer are 
illustrated in Figure 1. 
 

  
 

 
Figure 1: Experimental data for Treloar’s rubber (left) and Kanyanta & Ivankovic’s 

polyurethane (right) 

 

Artery Experimental Data 
Weizsacker & Pinto (1988) studied the passive biomechanical response of rat carotid 
arteries and compared it to rubber tubes and investigated the isotropy and 
anisotropy of the arterial wall. They show that the elasticity of arteries is similar to 
that of rubber tubes. During the experiment, the rubber tube experienced an 
aneurysm. 
 
Sommer et al. (2018) investigated the differences in biomechanical properties 
between similar sized subclavian and iliac arteries. Arteries were subjected to axial 
strains, transmural pressures, and torsion through extension-inflation-torsion 
experiments. Axial and circumferential residual stresses were determined, and the 
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microstructure was investigated. Kamenskiy et al. (2014) also experimented on 
subclavian arteries. 

Thin and Thick-Walled Cylinders 
This section details the development of a simple cylinder model of arterial wall while 
simultaneously completing validation cases. These validation cases show that the 
model results agree with those from analytical calculations. For each progressive 
version of the model, it is important to understand the material mechanics involved 
and to check that the model was set up correctly. Stresses and strains were obtained 
from the model at points across the cylinder wall and statistically compared to 
analytical calculations. Different loading and boundary conditions are considered in 
different validation cases to better understand how the model setup affects results. 

Investigation 

(a) (b) 
 

Figure 2: Meshes of the (a) thin-walled cylinder and (b) thick-walled cylinder 

 
Using static-structural analysis in ANSYS, simple quarter-cylinders were modelled, 
as shown in Figure 2. The use of quarter-cylinders reduces mesh size and hence 
solve time while behaving like full tubes. The thin and thick-walled cylinders have the 
same length and outside radius but have a different wall thickness. Dimensions are 
summarised in Table 1. 
 
 

Table 1: Cylinder Dimensions 

 

Dimension (mm) Thin Model Thick Model 

Inner Radius 3.9 2.5 

Outer Radius 4.0 4.0 

Wall Thickness 0.1 1.5 

Length 10.0 10.0 

 
 
Structural steel is used for the material and an internal pressure of 1 MPa is applied. 
For the thick-walled cylinder, inside and outside radii were set to 2.5 and 4 mm, 
which is similar to the subclavian arteries from Sommer et al. (2018). Model 
parameters like dimensions, internal pressure, and material properties are arbitrary 
for these cases because the aim of them is to validate the model. 
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The ANSYS default global mesh size was used, and edge sizing controls were 
applied to the wall thickness to set the number of divisions across the wall to 4. Only 
a simple mesh is needed at this stage; a mesh independence study is later 
performed. To model a full cylinder as a quarter-cylinder, frictionless constraints are 
applied to the cut faces. One end face is constrained from moving in the axial 
direction while the other is free to move. Results are taken halfway along the cylinder 
from the inner radius to the outer radius, as shown by the illustrated path in Figure 3. 
 
 

 
 

Figure 3: Radial position path along wall thickness 

 
The following cases are investigated: 

• Thin-walled cylinder 
• Thick-walled cylinder 
• Thick-walled cylinder constrained from axial deformation 
• Thick-walled cylinder with end plates 
• Thick-walled cylinder subject to both internal and external pressure and 

with end plates 
 
The thin-walled cylinder validation case was used to quantify the amount that the 
inner and outer stresses differ from thin-walled cylinder theory. The thick-walled 
cylinder validation cases demonstrate how end plates, a zero axial deformation 
boundary condition, and the addition of external pressure affects cylinder stresses 
and strains. 
 
For analytically validating the axial stress for a thick-walled cylinder constrained from 
axial deformation, equation (11) was used, which was derived from equation (8). 
 

 𝜎𝐿 =  𝜈(𝜎𝑟 + 𝜎𝐻) (11) 
 
When considering end plates, they are simulated by applying an axial force to the 
free end face of the model. This cylinder axial force can be determined by multiplying 
the internal pressure by the inner cylinder cross-sectional area, as shown by 
equation (12). The use of an axial force removes the requirement to physically model 
end plate geometry. Equation (13) determines the force used for the model because 
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it is a quarter-section of a cylinder and thus, the force must be divided by four. For 
the thick-walled cylinder, the model axial force is calculated to be 4.91 N. 
 

 
When considering external pressure, equations (14-15) give the analytical hoop and 
radial stresses. These have been derived from the Lamé equations using the 
boundary conditions 𝑟 = 𝑅1, 𝜎𝑟 = −𝑝1 and at 𝑟 = 𝑅2, 𝜎𝑟 = 𝑝2. Analytical axial stress 
was calculated using equation (7). An external pressure of 0.1 MPa was applied. 
 

 𝜎𝐻 =
𝑝1 − 𝑝2𝑘2 +  

𝑅2
2

𝑟
(𝑝1 − 𝑝2)

𝑘2 − 1
 (14) 

 
𝜎𝑟 =

𝑝1 − 𝑝2𝑘2 −  
𝑅2

2

𝑟
(𝑝1 − 𝑝2)

𝑘2 − 1
  

(15) 

Results and Discussion 
Tables 2 and 3 show the model and analytical results for the thin-walled cylinder. 
Radial stresses are ignored as they can be neglected for thin-walled cylinders 
(Hearn, 1997b). The model hoop stress decreases from 39.64 to 38.64 MPa from the 
inner to outer radii. This shows a negligible difference as the hoop stress at the inner 
radius is only 2.59% greater than at the outer radius. This is expected because the 
wall thickness to inner diameter ratio is 1/78, which is much less than the 1/20 
specified by Hearn (1997b) for the thin-walled assumption. The model axial stress is 
so small that it is considered zero, as expected. 
 

Table 2: Thin-walled assumption cylinder analytical results 

 

Wall Thickness 
(mm) 

Hoop Stress 
(MPa) 

Axial Stress 
(MPa) 

Hoop 
Strain 

Axial 
Strain 

0.1 39.00 0.00 1.95E-04 -5.85E-05 

1.5 1.67 0.00 8.33E-06 -2.50E-06 

 
 

Table 3: Model results for the thin-walled cylinder 

 

Radial 
Position (mm) 

Hoop Stress 
(MPa) 

Axial Stress 
(MPa) 

Hoop Strain Axial Strain 

3.900 39.64 -1.06E-06 2.00E-04 -5.78E-05 

3.925 39.38 2.75E-08 1.98E-04 -5.78E-05 

3.950 39.13 3.82E-08 1.97E-04 -5.78E-05 

3.975 38.88 1.29E-06 1.95E-04 -5.78E-05 

4.000 38.64 1.44E-06 1.93E-04 -5.78E-05 

 
Model results for the thick-walled cylinder cases are shown in Figure 4 for stresses 
and Figure 5 for strains. The hoop and radial stresses and strains significantly 
change from the inner to outer surfaces. This cylinder has a wall thickness to inside 

𝐹 = 𝑝𝜋𝑅1
2 (12)  𝐹 =

𝑝𝜋𝑅1
2

4
 (13) 
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diameter ratio of 3/10, which is much larger than the 1/20 recommended for the thin-
walled assumption. A constant axial strain is induced due to the hoop and radial 
stresses because of the Poisson effect. 
 
(a) Thick-walled cylinder (b) Thick-walled cylinder constrained from axial 

deformation 

  

(c) Thick-walled cylinder with end plates (d) Thick-walled cylinder with internal and external 
pressure and with end plates 

  

 
 

Figure 4: Stresses across wall for the thick-walled cylinder validation cases 

 

As shown by graphs (b), if the cylinder is constrained from deforming axially then 
axial stresses are induced. This is because axials strains are still laterally induced by 
the hoop and radial stresses but, because of the zero axial strain constraint, axial 
stresses are produced to cancel them out. Hoop and radial stresses are unaffected; 
however, hoop and radial strains have slightly changed due to the axial stress 
inducing lateral strains in the hoop and radial directions. 
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For the thick-walled cylinder with end plates, the applied axial force produces a 
constant axial stress and strain along the wall thickness and this in turn induces 
lateral strains that affect the hoop and radial strains. Hoop and radial stresses are 
unchanged from the (a) thick-walled cylinder case. 
 
Figure 4(d) shows that an external pressure reduces the hoop and axial stresses for 
a thick-walled cylinder with end plates. The radial stresses at the inner and outer 
radii are equal in magnitude to the internal and external pressures respectively, but 
they are negative because the pressures radially compress the cylinder wall. 
 

(a) Thick-walled cylinder (b) Thick-walled cylinder constrained from axial 
deformation 

  

(c) Thick-walled cylinder with end plates (d) Thick-walled cylinder with internal and external 
pressure and with end plates 

  

 
 

Figure 5: Strains across wall for the thick-walled cylinder validation cases  

 
Table 4 presents the root-mean-square errors (RMSE) for the stresses and strains 
which shows how well the model and analytical results match. The RMSEs are very 
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small relative to the values in figures 4 and 5, which shows that the model and 
analytical calculations strongly agree. In conclusion, these validation cases have 
scoped out loading and boundary conditions and demonstrated that the model 
complies with analytical theory. 
 

Table 4: RMSE of the model and analytical results for the thick-walled cylinder validation 
cases 

 

 Thick-Walled Cylinder Validation Case 

 (a) (b) (c) (d) 

Hoop Stress RMSE (MPa) 0.010 0.010 0.010 0.009 

Radial Stress RMSE (MPa) 0.010 0.010 0.010 0.009 

Axial Stress RMSE (MPa) 0.000 0.000 0.000 0.000 

Hoop Strain RMSE (x106 strain) 0.067 0.067 0.067 0.060 

Radial Strain RMSE (x106 strain) 0.067 0.067 0.067 0.060 

Axial Strain RMSE (x106 strain) 0.000 0.000 0.000 0.000 

 

Geometric Nonlinearity 

Figure 6: Large deflection of a cylinder under constant pressure with (a) showing the 
undeformed cylinder and (b) the deformed cylinder 

 
 
When cylinder deformation is large, its geometry changes. This affects the behaviour 
of a real cylinder because the projected area upon which the internal pressure P is 
acting increases, as shown by Figure 6. With a constant pressure but increasing 
projected area, the resulting force increases. Therefore, the wall tension T must 
increase to maintain force equilibrium and thus the hoop stress increases. Also, the 
wall thickness decreases as the cylinder deforms due to the compressive radial 
stress which further increases hoop stress. The resulting behaviour is decreasing 
cylinder stiffness as deformation increases. 
 
This large deformation behaviour can be captured within ANSYS simply by enabling 
the large deflection option in analysis settings. Both thin and thick-walled models 
with large deflection have been validated by checking that they are in force 

(a) (b) 
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equilibrium using the Lamé equations for hoop stress. While this method does not 
analytically calculate the final geometry or stresses, it uses the model’s results to 
show it is in mechanical equilibrium. 

Large Deflection Validation 
For the thin-walled model, an internal pressure of 1.5 kPa is applied and the material 
was set to structural steel but with the Young’s modulus modified to 0.5 MPa. This 
pressure and Young’s modulus were chosen to ensure adequate deformation so that 
large deflection effects are non-negligible. 
 
The average model hoop stress across the cylinder wall was 0.07086 MPa. Using 
the geometric dimensions of the loaded model, the analytical hoop stress was 
calculated to be 0.07058 MPa. The analytical value is close to the model’s with a 
percentage error of 0.4%. This validates the thin-walled model because the model 
hoop stress matches the stress needed to keep the deformed geometry in force 
equilibrium. 
 
For the thick-walled model, the same material is used but a larger pressure of 30 
kPa is applied to ensure adequate deformation. The analytical hoop stress was 
calculated at both the inner and outer radii using the dimensions of the loaded 
model. Table 5 summarises the model and analytical hoop stresses. The analytical 
values are within 3.6% and 3.0% of the model values for the inner and outer radial 
locations respectively, which adequately shows that the model is in force equilibrium. 
 
 

Table 5:  Thick-walled cylinder large deflection validation 

 

Radial 
Location 

Model Hoop 
Stress (MPa) 

Analytical Hoop 
Stress (MPa) 

Inner 0.0853 0.0822 

Outer 0.0507 0.0522 

 

Solution-Dependent Axial Force 
An applied axial force to a thick-walled cylinder is constant and does not change with 
the geometry. However, it should increase with the square of the inner radius as per 
equation (15). This axial force is the result of the internal pressure on imaginary end 
plates. 
 
For a given internal pressure, there is a specific axial force that, when also applied, 
will stretch the cylinder so that the final inner radius corresponds to the applied axial 
force as per equation (15). An iterative convergence method is developed to solve 
this axial force by recalculating it until it converges: 
 

 𝐹 =
𝑝𝜋𝑟𝑖

2

4
 (15) 

 Axial Force Percentage Error =  
𝐹𝑢𝑝𝑑𝑎𝑡𝑒𝑑 − 𝐹

𝐹
× 100% (16) 
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1. Calculate the axial force using equation (15) and the initial inner radius 
of the model. 

2. Apply this axial force to the model and run. 
3. Recalculate the axial force using the final inner radius from the model 

results. Consider the recalculated axial force 𝐹𝑢𝑝𝑑𝑎𝑡𝑒𝑑 and the prior 

axial force F. 
4. Calculate the axial force percentage error using equation (16). 
5. If the axial force percentage error meets the convergence criterium, 

stop. Otherwise, apply the updated axial force to the model and rerun. 
Repeat steps 3 to 5. 

 
A convergence criterium of less than 0.1% was chosen because it achieves excellent 
accuracy while only requiring two to three iterations for convergence. More iterations 
are needed for larger stetches because the initial error in axial force will be larger. 
This iterative convergence method produces a solution-dependent axial force 
(SDAF) for the given internal pressure, which removes the need for physically 
modelling end plates. 
 

Results and Discussion 
The geometric nonlinearity effects of the large deflection (LD) option and the 
solution-dependent axial force (SDAF) on model behaviour is shown in Figure 7. LD 
on captures geometric nonlinearity due to the internal pressure whereas applying the 
SDAF captures geometric nonlinearity due to the axial force. Diametral stretch is 
defined at the outer radius to show the amount of inflation of the whole cylinder. Axial 
stretch is constant across the cylinder wall and it shows the amount of lengthening or 
shortening. 
 
The results show that the LD option produces a decreasing diametral stiffness 
whereas the SDAF produces a slight increasing diametral stiffness. SDAF produces 
positive axial stretch which lengthens the cylinder at an increasing rate. When 
combined, the cylinder expands and lengthens at an increasing rate with internal 
pressure, which means a decreasing cylinder stiffness. This would translate to an 
increasing volume distensibility as discussed by Burton (1954) and would cause a 
blow-out at a particular threshold pressure. 
 
Due to convergence issues at larger strains, the model was only simulated for 
diametral strains below approximately 20%. Some investigation was done into these 
issues, but it was abandoned due to time constraints. The issues are likely due to 
time control settings, boundary conditions, and the need to refine the mesh as it 
deforms. 
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Figure 7: The effect of geometric nonlinearity on model behaviour with (a) showing 
diametral stretch and (b) axial stretch 

 

(a) 

(b) 
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Isotropic Hyperelastic Model 
This section introduces material non-linearity into the artery model using hyperelastic 
material models. Rubber and polyurethane experimental data are used to curve fit 
Neo-Hookean models. These elastomer materials are used in the artery model to 
show how the mechanical response compares to that of Weizsacker & Pinto’s (1988) 
rat carotid artery. Weizsacker & Pinto showed that an arterial segment behaves like 
rubber tubes. Lastly, the arterial wall model is curve fitted to the rat carotid artery 
(CA) and Sommer et al.’s (2018) human subclavian artery (SA). 
 
Using the curve fitting functionality in ANSYS Engineering Data, a Neo-Hookean 
model was curve fitted to rubber experimental data produced by Treloar (1944). 
Figure 8 shows this data and the curve fits for up to a 200% strain. As discussed by 
Marckmann & Verron (2006), the Neo-Hookean model is suitable for strains below 
150%. It has been chosen for the final model because the strains of interest are 
small and it involves only a single material parameter, which will make model fitting 
to artery experimental data simple. This process was repeated for the polyurethane 
experimental data produced by Kanyanta & Ivankovic (2010). 
 

 
Figure 8: Neo-Hookean curve fit of Treloar’s rubber experimental data (1944) 

 

Mesh Independence Study 
A mesh independence study was performed to determine a suitable mesh for the 
final arterial wall model. The Treloar rubber neo-Hookean material is used along with 
the geometry of the rat CA, which is an inner radius of 0.437 mm, an outer radius of 
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0.538 mm, and a chosen length of 1.5 mm. A suitable loading scenario needed to be 
chosen for this study. Therefore, a series of simulations were performed using the 
standard mesh sizings from earlier models (default global mesh with 4 radial 
divisions) to map out the pressures and strains. 
 
The maximum pressure simulated was 600 mm Hg, which gave a hoop strain of 
18.8%. The 400 mm Hg pressure and its corresponding SDAF value produced a 
10.3% hoop strain. This was chosen as the loading scenario for the mesh 
independence study because it is in the middle of the considered hoop strain range. 
The results from the mesh independence study in Figure 9 show that the number of 
radial divisions has the greater impact on the resulting hoop strain and the solve 
time. The number of axial divisions had negligible effect. 
 

  

  

 
 
Figure 9: Mesh independence of radial and hoop divisions for model hoop and axial strains 

 
As shown by Figure 10. The number of divisions for the final mesh was chosen to be 
4, 20, and 40 for the radial, hoop, and axial directions, respectively. The radial 
divisions number was kept at 4 because increasing it would mean increasing the 
number of divisions in the other directions to maintain suitable element aspect ratios, 
which would result in a much larger number of elements. The percentage difference 
in hoop strains between 4 and 16 radial divisions is 1.5%, which was considered 
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acceptable. The number of hoop and axial divisions was chosen to ensure suitable 
element aspect ratios. 
 

 
 

Figure 10: Final Mesh 

 
 

Mechanical Responses of the Hyperelastic Artery Models 
Using the curve fitted neo-Hookean material models for Treloar’s (1944) rubber and 
Kanyanta & Ivankovic’s (2010) polyurethane elastomer, the models’ responses were 
simulated and are shown in Figure 12. To allow comparison with the rat CA, the 
loading and unloading paths from Weizsacker & Pinto’s (1988) response were 
extracted and averaged to get the pressure-diameter response shown in Figure 11. 
 
The elastomer artery models have much stiffer pressure-diameter responses than 
Weizsacker & Pinto’s (1988) rat CA. Therefore, the model is curve fitted to 
experimental data from a real artery so that the behaviour can be better compared. 
This makes the artery model’s pressure-diameter response start with the same 
gradient as the real artery. Curve fitting was done by adjusting the material 
parameter of the neo-Hookean material model. A gradient factor was determined by 
dividing the initial gradient of the rubber artery model response by the initial gradient 
of the real artery response. Then, the material parameter of the rubber neo-Hookean 
material model was multiplied by this factor. 
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Figure 11: Averaged loading and unloading pressure-diameter response of Weizsacker & 

Pinto’s (1988) rat carotid artery 

 

 
Figure 12: Pressure-diameter responses of the rubber and polyurethane artery models 

compared to Weizsacker & Pinto’s (1988) rat carotid artery 
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Results and Discussion 
The pressure-diameter responses of the fitted models for Weizsacker & Pinto’s 
(1988) rat carotid artery (CA) and Sommer et al.’s (2018) human subclavian artery 
(SA) are shown in Figures 13 and 14.  
 

 
 
Figure 13: Pressure-diameter responses of the model and Weizsacker & Pinto’s (1988) rat 

carotid artery 

 

  

 
 

Figure 14: Pressure-diameter (left) and pressure-axial (right) responses of the model and 
Sommer et al.’s (2018) subclavian artery 
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The pressure-axial response is shown for the SA. The illustrated rat CA response is 
the same as in figure 11 and is the averaged loading and unloading path of 
Weizsacker & Pinto’s experimental data. This is because hysteresis was not of 
interest in this paper and Weizsacker & Pinto observed that the hysteresis loop is 
quite slim. 
 
The CA model was simulated up to approximately 23%, which is where convergence 
issues prevented solving as discussed earlier. After approximately 15% diametral 
strain, the model starts to diverge from the rat CA. For the entire simulated range, 
there is a RMSE of 1.47 mm Hg. However, when considering strains of below 15%, 
which is where the model’s response matches the artery, a RMSE of 0.43 mm Hg is 
calculated. This shows that the model simulates the behaviour of the rat CA well for 
up to 15% diametral strain. The RMSE could be further improved by giving the model 
a larger initial gradient, however, it was kept the same so that the responses can be 
compared easily. 
 
For the SA model, the dimensions of Sommer et al.’s (2018) patient II were used 
along with a length of 9.2 mm. The mesh settings are the same as those used for the 
rat CA and this length was chosen to maintain the same length to outer radius ratio. 
Figure 14 shows that the model simulates the pressure-diameter response of the SA 
well up to 2% diametral strain, where it then diverges significantly as the real artery 
stiffens. The RMSE for up to 2% diametral strain is 0.94 mm Hg. 
 
When considering the axial response, the model behaves differently to the real 
artery. The axial response has a decreasing gradient throughout the range whereas 
the real artery has an increasing gradient. The initial gradients likely differ due to the 
isotropic assumption. Arterial walls can be considered cylindrically orthotropic and so 
the stiffness differs in the axial and circumferential directions (Patel & Fry, 1969). 
Sommer et al. (2018) experimented with various axial pre-stretches and the results 
showed that increasing the axial pre-stretch for the SA led to a softer response. 
Therefore, the model may fit to a SA with a larger pre-stretch better. Axial pre-stretch 
was not considered in the model’s development and the SA had an axial pre-stretch 
of 1.0 whereas the rat CA’s was 1.74.  
 
The human SA is much stiffer than the rat CA. The decreasing gradient for the CA’s 
pressure-diameter response allows the neo-Hookean arterial wall model to fit to it 
well. It is only when the CA response approaches the inflection point that the model 
diverges from it. For possible future work, investigation into other hyperelastic 
material models is recommended so that better fits can be achieved. Material models 
that have an inflection point or increasing stiffness would benefit the CA and SA 
models, respectively, with more material parameters allowing control over the 
response characteristics. Both arteries stiffen significantly after a specific pressure. 
Collagen fibres are responsible for this behaviour because they begin to be 
progressively recruited (Holzapfel, Gasser & Ogden, 2000). 
 
The approach and methodology used in this paper has allowed the progressive 
development of an arterial wall model within commercial software. However, due to 
time constraints, investigation into material orthotropy, compound cylinders, and 
solver convergence issues was abandoned. The isotropic assumption of the model 
limits the value of comparing the SA’s pressure-axial responses. Addressing model 
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assumptions and investigating other hyperelastic material models in further work will 
likely improve the fit of the pressure-diameter and axial responses. The FEA and 
analytical validation methodology used provided plausible results. The limitations of it 
are the final mesh, SDAF convergence, non-linear analysis time control settings, and 
other inherent FEA limitations. Convergence issues at deformations larger than 20% 
diametral strain limited the range at which the model could be compared to the CA 
experimental data. 
 

Conclusion 
With a model of an arterial wall being progressively developed within commercial 
software, while successfully validating with analytical theory and comparing the 
mechanical responses with experimental data, the paper’s aim and objectives have 
been met. In conclusion: 

• The model can simulate the mechanical response of elastic arterial walls 
for different pressures; however, it can only simulate large deformations of 
up to approximately 20% diametral strain. This prevented the comparison 
of the mechanical responses of the rat CA for the full experimental range. 

• A convergence method for solving a solution-dependent axial force is 
presented.  

• The mesh independence study showed that the number of elements 
across the cylinder wall had the greatest effect and that 4 elements was 
appropriate for this study. 

• The neo-Hookean arterial wall model simulated Weizsacker & Pinto’s 
(1988) rat CA well with an RMSE of 0.43 mm Hg for the pressure-diameter 
response of up to 15% diametral strain. 

• It did not simulate Sommer et al.’s (2018) SA well as its pressure-diameter 
response significantly diverged after 2% diametral strain although it had an 
RMSE of 0.94 mm Hg below this. This suggests that the neo-Hookean 
material model is not suitable for simulating this subclavian artery.  

• The poor fit of the pressure-axial response for the SA shows that material 
orthotropy should be considered. 

• Due to time constraints, material orthotropy, compound cylinders, and 
convergence issues were not fully investigated. 

 

Recommendations 
• Investigation into improving model convergence for diametral strains 

above 20%. Possible solutions are mesh refinement during solving, 
optimising boundary conditions for large deformation analysis, and 
adjusting time control settings. 

• Addressing the remaining assumptions of the model. For example, the 
implementation of orthotropic material properties and multiple layers 
(compound cylinder). Orthotropic properties could improve the pressure-
axial response of the model for the SA. 
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• Investigation of other hyperelastic material models to achieve more similar 
behaviour to real arteries, including the consideration of modified 
hyperelastic models in literature that are for the purpose of arterial wall 
modelling. Custom material models could be implemented using ANSYS 
Mechanical APDL. 
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