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Abstract

This investigation aimed to determine the effect of government policies on the transmission of 
COVID-19 during the period 30/01/2020 – 03/01/2021. This investigation used qualitative data 
from policy legislation and journals and quantitative data from official government pandemic 
figures. It also used central factors of successful government approaches to assess the efficacy 
of the UK Government strategy. The measure used to monitor transmission rates is the 
instantaneous reproduction number Rt. I have used summary statistics, data visualisation, and 
time series representations to conduct exploratory data analyses. I also investigated the 
change in testing capacity and positivity rate over time to account for factors impacting the 
number of individuals testing positive for COVID-19. To estimate Rt, I used a 
deterministic Susceptible-Infected-Removed model and a stochastic epidemic model. I then 
used time series models to predict the positivity rate, transmission rate, and the number of new 
cases for the following week. From estimating Rt, we see that the rate of transmission fell 
during national lockdowns. Predictions showed that the positivity rate, transmission rate, and 
the number of new cases would increase if conditions had remained the same, i.e. if the 
government had not implemented additional mitigation strategies. Lastly, I compared the 
approaches taken in the UK with those in New Zealand and Brazil. From this, I was able to 
identify the possible influence of government policies on transmission. This investigation found 
that when governments communicated policies clearly, they had a more notable effect on 
reducing Rt. Furthermore, I have identified several areas in which the government could have 
improved to increase the effectiveness of policies on reducing transmission rates.
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1 Introduction

This investigation aimed to determine the effect government policies had on the
transmission of COVID-19. COVID-19 is a disease caused by the virus “severe acute
respiratory syndrome coronavirus 2”1 (SARS-CoV-2). The name was derived as such:
CO – corona, VI – virus, D – disease, and 19 – year of the first recorded case2.
COVID-19 is transmitted via droplet and airborne transmission. Droplet transmission
occurs when a susceptible individual is near an infected individual through both large and
small droplets that contain the virus. Airborne transmission occurs over larger distances
and via smaller droplets and particles of the virus that can hang in the air for extended
time periods3. The disease impacted life globally, and a widely discussed question was
how to slow its spread. Throughout the pandemic, the scientific community found
effective methods to minimise infection rates. However, the implementation of these
methods was widely dependent on political leadership and public response. During many
discussions throughout the pandemic, public figures used the “R number” to describe
how quickly the disease was spreading. Other common references to transmission rates
were to the value of R0, the basic reproduction number. However, they were usually
describing Rt, the instantaneous reproduction number4. The measure R0 describes the
reproduction potential5 of a disease. This potential is the average number of individuals
an infected individual would infect, under the assumption that everyone was susceptible
to the disease6. Whereas the measure Rt describes reproduction at time t, that is, the
average number of individuals an infected individual would go on to infect if conditions
remained as they were at time t7. Throughout this investigation, I have used Rt to
illustrate the current speed at which the disease was spreading. When Rt < 1 spread
was slowing, and when Rt > 1 spread was accelerating.

Governments all over the world implemented a variety of policies over the course of the
pandemic. Because of this, it was possible to find commonalities in those that have had
success. Researchers found that countries that successfully navigated the pandemic had
certain characteristics in common when it came to their approaches8, which were:

1. A high level of confidence in leadership;

• Messaging towards the public was clear and policies put in place were consistent,
transparent, and their motivations were well communicated.

2. Accurate methods for monitoring transmission;

• Inaccuracies which arose from lag were minimised.

3. Effective test, trace, and isolate systems;

• Not only were infected people successfully traced, but they also adhered to
isolation policies.

4. Adequate healthcare systems;

• The settings were well staffed.
• Staff were well protected from the virus.
• There were enough facilities to treat patients.
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5. Border controls;

• The flow of people into the country was being well managed.

I compared these approaches to those of the UK to assess the efficacy of COVID-19
mitigation strategies. Firstly, I outlined the policies which were implemented in the UK.

1.1 Key Government Policies

On the 16th March 2020, Prime Minister Boris Johnson gave his first speech regarding
COVID-19, which detailed the social distancing measures that would be in place from the
next day9. A week later, on the 23rd March 2020, a lockdown was implemented – where
people in the UK were required to stay at home unless they were completing essential
tasks10. The policy was clear and had “Stay home, Protect the NHS, Save Lives” as
a slogan10, which effectively communicated its motivation. The next influential moment
was when the lockdown was eased on the 15th June 2020, allowing all non-essential
businesses to reopen. England was the only country that began easing restrictions, with
Scotland, Wales, and Northern Ireland extending their lockdowns11. England then eased
its lockdown further on the 4th July 202011. However, we did not see restrictions eased
any more during the study period.

Additionally, regional policies were implemented in areas seeing higher amounts of new
infections12. Following the implementation of regional restrictions, a three-tier system was
introduced across the UK on the 14th October 202013. These tiers determined which
restrictions were in place, and the government assessed the tiers every two weeks14.
Changes across the four countries in the UK then came when Northern Ireland
implemented a “circuit breaker” lockdown on the 16th October 202015, which ended on
the 11th December 202016. The lockdown was originally lifted on the 20th November
2020, but officials reimplemented it a week later17. Wales then implemented a “firebreak”
lockdown on the 23rd October 202018 which was lifted on the 9th November 2020. Whilst
it did not enter a lockdown, Scotland introduced a separate five-tier system on the 2nd

November 202019, which remained in place during the study period. Lastly, England
entered a four-week lockdown on the 5th November 202020 which was lifted on the 3rd

December 2020. The final key policy seen was the fourth tier introduced across England,
Wales, and Northern Ireland on the 20th December 2020, several areas across the three
countries subsequently entered the new tier21.

1.1.1 Confidence in Leadership

Confidence in leadership plays a key role when it comes to slowing the spread of
disease. According to Professor Duffy, director at the Policy Institute at King’s College
London, “Trust in authority is key to maintaining compliance”22. When a population
doesn’t trust their government, they will not engage with the policies they implement. A
contributing factor towards public confidence is consistency in government policies.
Policy consistency between the different countries in the UK became a problem when the
countries began adopting different approaches. As a result, regulations varied depending
on the country. Travel between the countries was hard to control due to there being no
hard borders in the UK, and because of this, infections were harder to trace. These
issues became more apparent when different countries implemented lockdowns at
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separate times and implemented distinct restriction policies (see Section 1.1). Another
area where consistency was lacking was the reopening of schools across the UK. In
addition to schools reopening at different stages, they had independent policies in place
regarding attendance. For example, schools in England were the last to reopen on the 1st

September 2020, but had the strictest attendance policy. The policy stated that only
those who lived with someone who tested positive for COVID-19 were exempt from
attending in person23. The schooling issues became worse when infections rapidly rose
in December 2020, causing many to question whether schools should reopen after the
Christmas holiday. A study subsequently found that 3% of secondary school children had
the virus, with primary school children not far behind with 2% infected24. This meant that
children in school had the highest infection rates of any age group above 25 years,
causing parents to become very concerned about safety. Despite advice from scientists
that overall transmission would be lower if schools remained closed, most schools in
England reopened25. Aside from schools in areas of high transmission rates, which were
allowed to remain closed. Notable examples of inconsistency were the policies
implemented regarding Christmas celebrations. While the four countries originally
planned to have one policy across the UK, this changed when the number of infections
began to rise drastically. Each country took a different approach, announcing their new
policies only two days before the holiday26.

Clear messaging and policy transparency are huge influences on public confidence.
Governments can achieve these by providing uncomplicated advice and explanations of
what their strategies aim to achieve. However, as guidance began to change across the
UK, many people expressed concern about messaging being unclear and undermining
recovery efforts27. An area in which clear messaging was flawed was the guidance on
physical distancing. On the 17th March 2020, the government advised people to stay a
“safe distance” from one another28. This distance was not specified until almost a week
later, with advice stating that people should stay two metres apart from one another29.
After stressing the importance of physical distancing, the government then relaxed the
guidance to “one metre plus” – with the plus being additional measures. The intention
was to increase the number of settings that could reopen, such as hairdressers, but the
policy only encouraged the public to relax their attitudes. Some guidance that was
missing transparency was that on face-coverings. After dismissing their efficacy, the
government implemented a face-covering policy on the 24th July 2020. The policy made
it mandatory to wear a face-covering in most indoor shops, public spaces, and public
transport30. Due to the change in messaging, many questioned why face-coverings were
now required. Also, the existence of exemptions encouraged the public to ignore the
guidance entirely. These exemptions specified that people who did not have to wear
face-coverings were: children under eleven, those with a physical or mental illness and or
disability, and those to whom it may cause distress31. The vague nature of these
exemptions meant that many people were not wearing face-coverings and that those who
were, did so inconsistently.

Independent polls run by The Health Foundation in July 2020 and King’s College London
in November 2020 found that the British public had lost confidence in the government’s
handling of the pandemic. The Health Foundation found that 56% of participants felt “the
government has not handled COVID-19 well”32. King’s College London found that 57% of
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participants “did not trust the government to control the spread of COVID-19”22. King’s
College London also found that almost seven out of ten participants felt “the government
response has been confused and inconsistent”22. Additionally, University College London
found that the number of people in England who had “no confidence at all” in the
governments handling of the pandemic rose from 6% to 27% from March 2020 to
September 202033. Launched the week before the March 2020 lockdown began, this
study followed over 70, 000 participants throughout the pandemic. The study also found
that when they compared responses from participants in England, Wales, and Scotland,
the number of people with “no confidence” was lower in Wales and Scotland. They found
that, in September 2020, 6% of Welsh participants had “no confidence” in the Welsh
Government, and 10% of Scottish participants had “no confidence” in the Scottish
Government33.

1.1.2 Methods for Monitoring Transmission

Monitoring transmission is vital when it comes to successful mitigation strategies. If we
can accurately know the transmission rate at a given time, we can assess what mitigation
strategies are necessary. However, accurate monitoring requires extremely up-to-date
data. Due to guidance given throughout the study period, individuals were often not
tested until they were symptomatic, which prevented data from being up-to-date. The
time delay between becoming infected and showing symptoms – and hence getting
tested – meant that infected individuals would unknowingly spread the virus. Testing
delays became more concerning when research into pre-symptomatic and asymptomatic
transmission was considered. Namely, that asymptomatic34 and pre-symptomatic35

transmission could occur. Also, an individual’s infectiousness peaked before the onset of
symptoms35. The only way to mitigate the delay would be by testing everyone across the
country regularly. Since this was difficult to implement, it was important to trace the
contacts of infected individuals. Doing so meant that individuals exposed to the virus
could isolate, preventing further transmission. Without mass testing and comprehensive
tracing, it was impossible to monitor transmission accurately.

One policy that influenced the ability to monitor transmission was the introduction of lateral
flow tests. With results found within one hour, lateral flow tests allowed communities to
identify more cases than they otherwise would have been able to. When the scheme
began to roll out in November 202036, the aim was to increase the ability to interrupt
transmission chains. However, there was much contention as to whether these lateral
flow tests were appropriate for mass testing schemes. Many cited the fact that the tests
were not designed for use on asymptomatic individuals and that both false negatives – and
positives – were found to occur37. The main flaw with the scheme was the lack of clarity
regarding how individuals should interpret test results. If an individual tested positive, they
should have self-isolated and undertaken a PCR test (see Section 1.1.3). However, if they
tested negative, they should have continued to follow guidelines and behaved as if they
may have COVID-19. Understanding this was important due to findings suggesting that
lateral flow tests could miss up to 50% of positive cases38.

A crucial part of the UK’s monitoring of transmission was the genomic sequencing
conducted by scientists across the nation39. Genomic sequencing allowed us to monitor
changes in the strains of COVID-19, eventually leading to the identification of a notable
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new variant. In early December 2020, scientists found evidence of a variant spreading in
Kent, causing case numbers to soar40. After genomic sequencing, it was possible to
discover that cases of this variant had been circulating as early as the 20th September
202041. Because of this knowledge, additional measures were devised, such as the
introduction of tier four (see Section 1.1). Researchers found that the “Kent variant” has a
rate of transmission approximately 70% higher than the original strain of COVID-1942.
This discovery provided some explanation for why cases were rapidly increasing,
regardless of the measures in place.

1.1.3 Test, Trace, and Isolate System

As mentioned in Section 1.1.2 an important aspect of monitoring, and hence slowing,
transmission is an effective find, test, trace, and isolate system. Contact tracing and
isolation are vital when testing is not widespread. The NHS Test and Trace system was
regularly criticised due to repeated evidence of design flaws. Research suggested that
less than 20% of people in England self-isolated fully when instructed to do so43. A
study44 corroborated this research, finding:

• There were 333, 900 new infections in the first week of November 2020.

• Of these, 141, 804 (42%) were identified and passed to the Test and Trace system.

• From the people identified; 99, 212 (70%) provided details for 314, 817 close contacts,
21, 300 (15%) were reached but did not provide any contacts, and 21, 292 (15%) were
not reached.

• Of the close contacts provided, 190, 129(60%) were reached and asked to self-isolate.

• NHS Test and Trace estimated only around 50% of those contacted self-isolated fully.

It was possible to calculate that for every person who gave details, tracers identified three
contacts. Therefore, for the 333, 900 infected individuals, there were roughly 1, 001, 700
close contacts. If approximately 50% of the close contacts reached, self-isolated fully
(95, 065 people), then approximately only 9.5% of potentially infectious individuals were
staying home. A factor contributing towards a lack of adherence to self-isolation policies
was the financial ability to do so. Evidence suggested that the ability to self-isolate was
three times lower in those who have a lower socio-economic status and that many were not
eligible for the support which was on offer43. The government made efforts to increase the
number of people self-isolating by reducing quarantine to ten days45. This change applied
to those who: tested positive for COVID-19, developed symptoms of COVID-19, had been
in close contact with someone who tested positive for COVID-19, or had returned from a
country not on the travel corridor list (see Section 1.1.5).

A large part of the test, trace, and isolate system is the testing. Throughout the study
period, it was possible to get a test either privately for a cost or via the NHS for free.
Whilst testing capabilities had improved since the beginning of the pandemic, NHS testing
capacity was still limited.

Testing availability increased with the introduction of lateral flow tests in November 202036.
The mass testing scheme aimed to interrupt transmission chains but quickly became a
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point of contention (see Section 1.1.2). Those involved in the trial of mass testing in
Liverpool defended their use and felt they were an overall success46. Professor Buchan,
executive dean at the Institute of Population Health at the University of Liverpool, stated
that the “fear of not having enough financial support in isolation was the biggest perceived
barrier for testing”46. He also added that “the main conclusion I would draw is trust local
communities to self-organise around the smart testing approach”46.

The two forms of testing which were on offer were Polymerase Chain Reaction (PCR) tests
and lateral flow tests. The difference is that PCR tests search for the genetic material of
the virus and lateral flow tests search for virus proteins47. PCR tests are viewed as the
‘gold standard’ because they hold the most certainty, but they take up to three days to
provide results47. Lateral flow tests provide results in about 30 minutes, but they are less
likely to detect infection and cannot confirm that an individual does not have COVID-1947

(see Section 1.1.2).

The following individuals were eligible48 for a free PCR test:

• People with COVID-19 symptoms; high temperature, new continuous cough, loss or
change to sense of smell or taste.

• Care home residents or staff.

• People who are going into hospital.

1.1.4 Healthcare System

An adequate healthcare system can be the difference between having and losing control
over the virus. Once a country’s healthcare system is overwhelmed, things become
markedly harder to manage. Throughout the pandemic, the NHS had many struggles.
These struggles included thousands of staff being brought back from retirement49 and
massive shortages of protective equipment at the start of the pandemic, causing staff to
feel unsafe50. An important thing to note is that hospital capacity in the UK was lower
than that of many wealthy countries51. This hospital capacity meant that when the
number of critical care patients rose, the healthcare system was quickly saturated. The
motivation for many policies was to conserve NHS resources, and often policies were
implemented when the system was close to being overwhelmed.

Throughout the pandemic, doctors across the world have tested treatment options for
COVID-19 patients. The World Health Organisation ran one of the “largest international
randomised trials” with almost 12, 000 patients based in 500 hospitals in over 30
countries52. This trial found that corticosteroids had been the only effective treatment so
far52. Other treatment discoveries have been the use of breathing support mechanisms,
such as oxygen therapy, continuous positive airway pressure (CPAP), and invasive
mechanical ventilation (IMV)53. An example of how treatments have changed is how at
the beginning of the pandemic, doctors were ventilating patients earlier, and only
one-third of ventilated patients survived53.
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1.1.5 Border Control

Border control is paramount in controlling the spread of a virus as it can prevent
additional cases from being imported. At the beginning of the pandemic, border control in
the UK was minimal. However, there were several policies enacted which impacted
travelling to and from the UK. The predominant impact on travel was the initial lockdown,
which prevented people from travelling out of the UK unless essential. Another policy
impacting travel specified that travellers entering the UK must self-isolate for two weeks54

and was implemented on the 8th June 2020. On the 3rd July 2020, the UK Government
introduced “travel corridors”. The government created travel corridors to stimulate the
damaged economy. However, they allowed people into the UK without the need for
self-isolation, given that they were entering from a pre-approved country55. As of January
2021, individuals were not being tested upon arrival at airports, meaning that even those
coming from countries deemed safe posed a sizeable risk of spreading the disease.
When imported, cases were difficult to trace, and they presented a higher risk than local
community transmission.

2 The Data

Throughout this investigation, I have used a combination of qualitative and quantitative
data. The qualitative data is the government policy information, opinion pieces, and
scientific journals. The quantitative data is the pandemic and testing data. Government
policy information details the policies, when the policies began, and when the policies
ended – or how long the policies were in place. The pandemic data is a combination of
datasets available on the official government dashboard56 and contains information from
30.01.2020 to 03.01.2021 – the period of study for this chapter. I defined the beginning of
the study period as the date of the first recorded case of COVID-19 in the UK and the
end of the study period as the date preceding the UK Government announcement of a
third lockdown. The testing data is also a combination of datasets available on the official
government dashboard56 but contains information from 21.04.2020 to 03.01.2021 – as
testing data was not available until the 21st April 2020.

2.1 Pandemic Data

For each date, the data contains the corresponding number of confirmed57 and the
number of dead58. Where “confirmed” is someone who had tested positive with
COVID-19 and the corresponding date is when the individual gave the sample. Here
“dead” are those who had COVID-19 registered on their death certificate as one of the
causes. Another important piece of information required for this investigation was the
number of people susceptible to COVID-19 before the first infection in the UK.
Throughout, “susceptible” describes those who had not yet contracted COVID-19 and are
therefore vulnerable to it. To get the most accurate estimation of this figure before the first
infection, I have used a mid-2019 population estimate from the Office for National
Statistics59. I then used this information within "for" loops in R. These loops calculate
three useful variables, the current number of susceptible individuals, the number of
currently infected, i.e. the number of infected individuals at a given time, and the number
of recovered, i.e. people who tested positive more than 28 days ago. After I had this
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information, I cumulated the number of recovered and edited the data set. This leaves
the following, with 333 observations:

• Date

• Confirmed

• Dead

• Recovered

• Susceptible

• Currently infected

• Cumulative confirmed

• Cumulative dead

• Cumulative recovered

An infectious period is how long an infected person can infect others. For COVID-19,
researchers estimated this to be up to 10 days from the onset of symptoms, which can
develop up to 14 days after infection60. Additionally, researchers found that transmission
could occur before symptom onset35 and from those who were not showing symptoms34.
The government guidance throughout the study period on estimating COVID-19 deaths
states that a person had died of COVID-19 if they died within 28 days of their first positive
test result61. Using this information about transmission and death, I defined the time taken
to be recovered as 28 days – until which point we classed the individual as currently
infected. For this investigation, I have assumed that recovered individuals were immune
to catching COVID-19 again. It was still unknown how long immunity would last, and while
there had been cases of reinfection62, it was unknown how frequently this occurred. It will
likely take many years for the scientific community to understand the immune response
to COVID-19. For these reasons, I have assumed that reinfection will be negligible – and
hence can be ignored.

2.2 Testing Data

For each date, the data contains the corresponding number of tests conducted63, number
of positive results57, and PCR testing capacity64. The number of tests conducted is the
“number of confirmed positive, negative or void COVID-19 virus test results”65. This
includes both PCR tests conducted in laboratories and lateral flow tests conducted
outside of laboratories. Here the number of cases is the number of positive results by the
date the sample was taken. The PCR testing capacity is “a projection based on reports
from labs on how many lab-based tests they have capacity to carry out each day based
on availability of staff and resources”66. It does not reflect the capacity for lateral flow
tests, which became more readily used since their national roll out on the 10th November
202036.

Using the number of cases and the number of tests conducted, I calculated the rate of test
positivity for the associated date using the equation as follows:
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positivity rate =
number of cases

number of tests conducted
.

To contextualise this result I also expressed the positivity rate as a percentage.

3 Exploratory Data Analyses

For this investigation, I have conducted exploratory data analyses of the pandemic and
testing data. I have used data visualisation for both the pandemic data (described in
Section 2.1) and the testing data (detailed in Section 2.2). Additionally, I have also used
summary statistics and time series representations for the pandemic data.

3.1 Summary Statistics – Pandemic Data

Summary statistics are produced using the "summary" function67 and are shown in
Table 1. These statistics are the: minimum, first quartile, median, mean, third quartile,
and maximum. The minimum and maximum intuitively tell us the minimum and maximum
values taken in the data. The more relevant values are the upper and lower quartiles,
which exclude extreme data values, and can be used to calculate the inter-quartile range
(IQR). The IQR can be used to describe the dispersion of data, also known as the
spread. Finally, there is the mean and the median, describing the average values taken in
the data. The mean is the sum of values in a sample, divided by the sample size. The
median is the middle value of the data once it is in size order. For symmetrically
distributed data, the mean is a good way to describe the average. For any other data, we
should use the median68.

Table 1 shows that the data had a large IQR, which implies it had a large dispersion. Large
dispersion indicates that values were very high – or rising – at the end of the study period
because as values fall, the IQR becomes smaller. The IQR gets smaller because high
values at peaks become outliers and hence don’t get included in the upper quartile. We
can also see the mean and medians of the data were not close together, indicating an
absence of symmetry.

Table 1: Summary statistics for daily pandemic data

Data Type Min Q1a Median Mean Q3b Max IQR
Confirmed 0 772 2863 8249 13298 81542 12526
Dead 0 22 118.5 283.9 461.2 1457 439.2
Currently infected 2 72172 91562 214319 321172 1113615 249000
a Q1 is the first (lower) quartile
b Q3 is the third (upper) quartile

3.2 Data Visualisation – Pandemic Data

To identify patterns in the data and motivate the investigation, I have presented the
pandemic data through data visualisation – which I computed in R. Figure 1 shows the
number of confirmed cases each day, with each red point being a daily observation. We
can see that after September 2020, the daily incidence showed an upward trend, which
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peaked in November 2020. Following a brief fall in cases, the number of confirmed cases
began to rise in December 2020 and continued to do so for the remainder of the study
period.

Figure 1: Scatter plot of the daily incidence of confirmed cases, where red points signify daily observations.
Plotted using the "ggplot" function69 from the "ggplot2" package70.

Figure 2 used the same information as Figure 1 but presented it differently. Visualising
the incidence this way can illustrate the difference in incidence each day more clearly.
For example, we see that from December 2020, the daily incidence increased and had a
comparatively steep upward trend.

Figure 3 shows the number of infected people at any given point in time, where red points
signify daily observations. The number of infected people is an indication of whether the
rate of transmission is growing or decaying. When the transmission rate is decaying, the
number of currently infected will be falling. However, when the transmission rate is
growing, the number of currently infected will be rising. We can see that the number of
currently infected people did fall in both June 2020 and November 2020, meaning that
the rate of transmission was decaying. We can also see that from July 2020 to
September 2020, the number of currently infected remained steady at approximately
124, 000. However, we see that the number began to rise in September 2020 and peaked
in November 2020. We then see a dip in the number of currently infected at the end of
November 2020, followed by a sharp increase from December 2020 into January 2021.
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Figure 2: Incidence plot of the daily confirmed cases. Plotted using the "plot" function71 from the
"graphics" package72. Data manipulated using the "uncount" function73 from the "tidyr" package74

with weights = ‘confirmed’ and the "incidence" function75 from the "incidence" package76.

Figure 3: Scatter plot of the daily currently infected over time, where red points signify daily observations.
Plotted using the "ggplot" function from the "ggplot2" package.
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3.3 Time Series Representations – Pandemic Data

To visualise the data separately, I have represented the pandemic data as time series. I
have also used smoothing to extract the underlying trend in the confirmed cases.

3.3.1 Separated Time Series

Figure 4 shows the separated time series of the pandemic data. Visualising time series in
this manner is a way to compare different patterns, especially between data on different
scales. For example, if I plotted the currently infected or susceptible with the other data, it
would be hard to compare them. This difficulty is because the number of currently
infected was much higher than that of the other time series, and the number of
susceptible was higher still. Figure 4 illustrates the similar patterns of the confirmed,
dead, recovered, and currently infected. We see there was a dramatic spike in deaths in
April 2020, which peaked at 1460, after which deaths remained low until November 2020.
Notably, the proportion of deaths to confirmed cases in April 2020 was much higher than
at any other point in the study period. The higher proportion of deaths may have been
because we had fewer treatment options, PPE, and trained staff members at the
beginning of the pandemic (see Section 1.1.4). We can also see that the number of
susceptible individuals decreased as the number of confirmed, dead, recovered, and
currently infected increase. We describe this as an inverse relationship.

Figure 4: Plots of the individual time series of COVID-19 daily data. The top left plot shows the time series of
confirmed cases, the top middle plot shows the time series of deaths, the top right plot shows the time series
of recoveries, the bottom left plot shows the time series of currently infected, and the bottom right plot shows
the time series of susceptible. Computed using the "ts" function77 from the "stats" package78, plotted
using the "ggplot" function from the "ggplot2" package, and arranged using the "ggarrange" function79

from the "ggpubr" package80.
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3.3.2 Smoothed Time Series of Confirmed Cases

Figure 5 shows the smoothed time series of the confirmed cases, computed by applying
a simple moving average (SMA) to the data. A simple moving average is a type of linear
filter that takes the arithmetic mean over the past n observations, where n is defined as
the period81 – here in days. Different values of n apply different levels of smoothing to
the time series, allowing trends to become more apparent. After smoothing, the upward
trend of infections toward the end of the study period became more evident than before.
When n = 12 (days), we have entirely smoothed out the volatile nature seen at the end of
December 2020 to show the underlying upward trend of confirmed cases that was present.

Figure 5: Plots of the smoothed time series of daily confirmed cases. The top plot shows the original time
series of the daily confirmed cases, the middle plot shows the time series smoothed with n = 4 (days), and
the bottom plot shows the time series smoothed with n = 12(days). Computed using the "as.xts" function82

from the "xts" package83, smoothed using the "SMA" function81 from the "TTR" package84, plotted using
the "ggplot" function from the "ggplot2" package, and arranged using the "ggarrange" function from the
"ggpubr" package.

3.4 Data Visualisation – Testing Data

To provide a contextual understanding of the pandemic, I have used data visualisation for
the testing data. From the testing data, we can understand three aspects of testing in the
UK: testing capacity, tests conducted, and rate of positivity.

3.4.1 Testing Capacity

Figure 6 illustrates that testing capacity increased between May 2020 and January 2021.
An increased capacity could account for the increase in positive test results we saw in
November 2020 and December 2020 (see Figure 1 and Figure 2), as this was when there
had been notable increases in capacity.
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3.4.2 Tests Conducted

Figure 7 shows there was a general upward trend in the number of tests conducted daily.
Whilst this increase could partially have been accounted for by the increased testing
availability, it also suggests that there was an increase in those experiencing symptoms.
We can also see that there was variability in the number of tests conducted each day,
which suggests an element of seasonality. That is, the number of tests conducted
depended on the day of the week.

Figure 6: Plot of the daily PCR testing capacity over time. Plotted using the "ggplot" function from the
"ggplot2" package.
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Figure 7: Plot of the daily number of tests conducted over time. Plotted using the "ggplot" function from
the "ggplot2" package.

3.4.3 Rate of Positivity

Figure 8 shows that the positivity rate was high at the start of the data, reaching 0.24 in
April 2020. When we compare Figure 8 to Figure 6 and Figure 7 we can see that the high
rate related to the lower testing availability and the smaller number of tests conducted at
the beginning of the pandemic. From this, we can assume that people who undertook
tests suspected they were infected. Figure 8 shows that the positivity rate was falling until
September 2020, where it began to rise. Throughout, we see there was volatility in the
rate of positivity which became more pronounced from October 2020. We can see there
was a positive correlation between the volatility and the variability described in
Section 3.4.2. When we compare Figure 8 with Figure 2, we can see that from
September 2020, both figures exhibited the same pattern. We conclude that the
increasing rate of people who tested positive was not due to the increased availability of
testing (see Figure 6). If the increased number of positive cases were related to an
increase in testing capacity, the positivity rate would have decreased – as seen in May
2020.
newline

When we look at the test positivity rate as a percentage, we see that in May 2020, 24% of
COVID-19 tests were positive. When percentage positivity was at its lowest, in July 2020
and August 2020, only 0.35% of tests were positive. Toward the end of the study period,
the percentage of tests that were positive was approximately 10%.
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Figure 8: Plot of the daily rate of test positivity over time. Plotted using the "ggplot" function from the
"ggplot2" package.

4 Methodology

For this investigation, I have used two methods to estimate transmission rates. These
are a deterministic SIR model and a stochastic epidemic model. Deterministic models
have a set of equations that describe the system inputs and outputs exactly and predict
outcomes with 100% certainty. Comparatively, stochastic models account for an element
of randomness and represent a situation where uncertainty is present85. Following this, I
have used time series modelling to predict the confirmed cases, rate of transmission, and
rate of positivity.

4.1 Deterministic SIR Model

Three functions underpin the SIR model, describing the number of susceptible, S(t),
infected, I(t), and removed, R(t), people at time t. We define removed as the number of
people who have either died or recovered. We can then use these functions to define the
SIR model as a system of three Ordinary Differential Equations (ODEs)86:

dS(t)

dt
= − βI(t)S(t)

N
, (1)

dI(t)

dt
=

βI(t)S(t)

N
− γI(t), (2)

dR(t)

dt
= γI(t). (3)
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The parameter β describes the total rate at which an infected person generates new
infections. The parameter γ describes the rate at which people are removed from the
population – either via death or recovery.

Equation (1) describes the rate at which the number of susceptible individuals changes.
This value is always negative because susceptible individuals are becoming infected, and
hence the number of them is constantly decreasing.

Equation (2) describes the rate at which the number of infected individuals changes and
can be either positive or negative depending on the number of people removed.

Equation (3) describes the rate at which the number of removed individuals changes.
This number is always positive as an individual cannot leave the removal bracket.

Figure 9 shows how individuals transition between states87, related to the values of β and
γ. From this, we can see that a higher value of β would increase the speed at which
people become infected. And a higher value of γ would increase the speed at which
people become removed. To solve this system of equations we need the initial values
S(0), I(0), and R(0) – the function values at t = 0. We also need the values of β and γ,
which we will estimate.

Figure 9: Diagram illustrating the SIR model system, where S = S(t), I = I(t), and R = R(t).

To implement the deterministic SIR model, I used optimisation to estimate the values of β
and γ. This optimisation was carried out using the "modFit" function88 from the "FME"

package89, to find the best combination of β and γ for the model. For this optimisation, I
used the "ode" function90 from the "deSolve" package91 to solve the ODEs using initial
values from the data and various combinations of values for β and γ. The process
minimises the residual sum of squares, which is the difference between the data and the
values predicted by the SIR model92. Once I have found the optimal combination of
values, we can then use it to calculate R0, defined as:

R0 =
β

γ
.

If we estimate β and γ over intervals, we can estimate Rt as:

Rt =
βt

γt

To do this, I first stored the relevant data in intervals. I then used optimisation to estimate
β and γ using the previous 7 days of data. I carried out this optimisation process with two
"for" loops, which model the data continuously. In the first loop, I defined a function for
each 7-day interval, which can solve the ODEs given the initial values from the stored data.
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It then calculates the residual sum of squares using the fitted values for each interval. In
the second loop, I minimised the residual sum of squares to find the optimal combination
of β and γ for each interval.

4.2 Stochastic Epidemic Model

The stochastic epidemic model93 uses a Poisson process to model incidence over time,
defined as:

It ∼ Poi(µt), with mean µt = Rt

t∑
s=1

It−sws,

where Rt is the instantaneous reproduction7 at time t, and ws is a distribution approximated
by a serial interval (SI). A serial interval is the number of days between symptom onset in a
primary case and the onset of symptoms in secondary cases94. The serial intervals in this
model were assumed to follow a shifted Gamma distribution. If transmission is assumed
to be constant for a time period, [t− τ + 1 : t] days, then the reproduction number can be
denoted as Rt,τ . This is the transmission in the period from day t− τ +1 to day t inclusive.

From this, we can show the likelihood function for the incidence during this period,
It−τ+1, ..., It, is:

L(It−τ+1, ..., It|I0, ..., It−τ , ws, Rt,τ ) =
t∏

s=t−τ+1

(Rt,τΛs)
Ise−Rt,τΛs

Is!
, where Λt =

t∑
s=1

It−sws. (4)

It is assumed that the prior of Rt,τ follows a Gamma(a, b) distribution, and can be defined
as:

P (Rt,τ ) =
Ra−1

t,τ e−
Rt,τ

b

Γ(a)ba
, (5)

where Γ(a) = (1 − a)!, for all positive integers. Note, this is a constant which can be
ignored up to proportionality.

We can then use a Bayesian framework to estimate the parameters of the model. The
Bayesian framework uses the prior distribution and the likelihood function to inform the
posterior distribution. We define the posterior distribution of Rt,τ by the following
proportionality:

P (It−τ+1, ..., It, Rt,τ |I0, ..., It−τ , ws) ∝ L(It−τ+1, ..., It|I0, ..., It, ws, Rt,τ )P (Rt,τ ). (6)

By using Equation (4) and Equation (5) in Equation (6), we can show that the posterior
distribution of Rt,τ is:
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Rt,τ ∼ Gamma

a+
t∑

s=t−τ+1

Is ,

(
1

b
+

t∑
s=t−τ+1

Λs

)−1
 . (7)

Equation (7) shows that the posterior distribution of Rt,τ follows the same distribution as
the prior. Hence, the Gamma prior is conjugate for the Poisson model – as it yields a
Gamma posterior.
Given the fact that Rt,τ follows a Gamma distribution, we have:

µt =
αt

βt

, (8)

σ2
t =

αt

β2
t

, (9)

CVt =
σt

µt

=

√
αt

β2
t

αt

βt

=

√
αt

β2
t

·
(
βt

αt

)
=

√
αtβ

2
t

β2
t α

2
t

=

√
1

αt

, (10)

where αt = a+
t∑

s=t−τ+1

Is and βt =

(
1

b
+

t∑
s=t−τ+1

Λs

)−1

.

Equation (8) defines the posterior mean, µt, of Rt,τ . Out of the values found from our
Bayesian inference, the posterior mean is the one used most in this investigation.

Equation (9) defines the posterior variance, σ2
t , of Rt,τ , and along with Equation (4) it is

used to calculate the posterior coefficient of variation.

Equation (10) defines the posterior coefficient of variation, CVt, of Rt,τ , and is often used
when defining the value of τ . It is important when defining τ that the value is small enough
to be sensitive to change but not so small that it creates too much statistical noise.

To implement the stochastic epidemic model, I used the "estimate R" function95 from
the "EpiEstim" package96. The function defines τ as the number of days used for the
sliding windows, which is by default set to 7 days. In other words, each date available
marks the start of a 7-day interval until 7 days before the final date. I then used these
intervals with the incidence data of the confirmed cases (see Figure 2). The "estimate R"

function uses a serial interval distribution to calculate the transmission rate, with a range
of values for the mean and standard deviation of days between successive cases. Studies
found these ranges using analyses of SARS, MERS and COVID-1994. By default, the
function uses mean = 5 and standard deviation = 5 for the prior distribution of Rt,τ ,
giving Rt,τ ∼ Gamma(1, 5). The use of these values describes the lack of information
that we know about Rt,τ and research has shown they have little effect on the posterior
distribution93 of Rt,τ .
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4.3 Time Series Modelling

For the time series modelling section of this investigation, I have used two methods. The
first method is univariate modelling, which means it involves only one time series. For the
univariate modelling, I used seasonal Auto Regressive Integrated Moving Average
(seasonal ARIMA) models. A seasonal ARIMA model is a simple stochastic time series
model97, which allows for seasonal influences. The second method is multivariate
modelling, which means it involves multiple time series. For the multivariate modelling, I
used a Vector Auto Regressive (VAR) model. A VAR model is a stochastic model of two
or more time series which influence each other98.

4.3.1 Univariate Time Series Modelling

For the univariate time series modelling, I fitted seasonal ARIMA models using three
individual time series. These were the time series for the daily confirmed cases, positivity
rate, and transmission rate. A seasonal ARIMA model is similar to an ARIMA model but
with additional seasonal terms which involve backshifts of the seasonal period99. A
backshift, denoted by the backward shift operator B, shifts the data back by one period
and is often used to signify differencing100. Differencing is the process used to transform
a non-stationary time series into a stationary one by finding the differences between
consecutive observations101.

A seasonal ARIMA model is written as:

ARIMA(p, d, q)(P,D,Q)m,

where (p, d, q) is the non-seasonal part of the model, (P,D,Q)m is the seasonal part of the
model, and m is the frequency of the data.

The values of p and P denote the presence of autoregressive (AR) terms. These AR terms
describe the influence that past observations have on current and new observations97.
The values of d and D denote the presence of integration (I) terms. These I terms describe
the presence of trends in the data, that is, the number of differences taken to achieve
stationarity97. Another way of viewing these terms is that d and D denote the number of
trends present in the season and non-seasonal data, respectively. The values of q and
Q denote the presence of moving average (MA) terms. These MA terms describe the
influence errors of past observations have on current and new observations97. We then
form the model by multiplying the non-seasonal and seasonal terms together99.

For example, ARIMA(1, 1, 1)(1, 1, 1)4 – a seasonal ARIMA model for quarterly data, can be
written as:

(1− ϕ1B)(1− Φ1B
4)(1−B)(1−B4)xt = (1 + θ1B)(1 + Θ1B

4)ϵt,

where xt is the data, ϵt is the error term, ϕ1 is the non-seasonal AR term, Φ1 is the seasonal
AR term, θ1 is the non-seasonal MA term, and Θ1 is the seasonal MA term99.

In this representation, we have the following:
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• (1− ϕ1B) which denotes the non-seasonal AR term,

• (1− Φ1B
4) which denotes the seasonal AR term,

• (1−B) which denotes the non-seasonal I term,

• (1−B4) which denotes the seasonal I term,

• (1 + θ1B) which denotes the non-seasonal MA term, and

• (1 + Θ1B
4) which denotes the seasonal MA term.

Note that when we have seasonal terms, the backshift is to the power of the frequency.
As we include terms at higher lags, the powers of our backshifts will increase, that is, at
lag 2 the backshift for a non-seasonal term would be B2 but would be B8 for a (quarterly)
seasonal term. Here we have B4 because the data is quarterly and we have only included
terms at lag 1.

In this example, the non-seasonal behaviour can be modelled by an ARIMA(1, 1, 1)
model. This shows that the non-seasonal data is non-stationary, as there is an
integration term. It also shows that current observations are influenced by both the value
and error term of the previous observation. The seasonal behaviour can be modelled by
an ARIMA(1, 1, 1) model, which shows that the seasonal data is also non-stationary.
Non-stationary seasonal data means that the seasonal trend is not the same for each
season. The model for the seasonal behaviour also shows that the current observation is
influenced by both the value and error term of the previous observation.

I have implemented the seasonal ARIMA models by creating time series using the relevant
data, which I set to have a frequency of 7. This frequency is equivalent to a weekly
seasonality, which accounts for the impact the day of the week had on the data. I then used
the "auto.arima" function102 from the "forecast" package103 to select the best seasonal
ARIMA model for the data. The function compares various seasonal ARIMA models and
determines the most suitable model based on a specified information criterion. The most
suitable model from the output of the "auto.arima" function is given in the form:

ARIMA(p, d, q)(P,D,Q)[m],

where first bracket indicates the non-seasonal behaviour, the second bracket indicates the
seasonal behaviour, and the square bracket indicates the frequency of the series.
To verify the best model available, I ran the "auto.arima" function three times and used
three criteria: AIC, AICc (the default criterion), and BIC. These criteria can be defined as
follows:

1. Akaike Information Criterion104: AIC = −2log-likelihood+ 2K

2. Akaike Information Criterion corrected104: AICc = −2log-likelihood+2K+
2K(K + 1)

n−K − 1

3. Bayesian Information Criterion105: BIC = Klog(n)− 2log(L(θ))

Where,
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• n is the sample size,

• K is the number of model parameters,

• log-likelihood is a measure of how well a model fits,

• L(θ), the maximised likelihood, is a measure of how likely it is we obtain the data we
have, supposing the model being tested was a given.

Through the use of the "tsdiag" function106 from the "stats" package, I then checked
the suitability of the chosen model. This function prints information regarding the
residuals of the model and the p-values for the Portmanteau test – which tests goodness
of fit106. Once I confirmed the most suitable model, I calculated 95% confidence intervals
for the fitted values and visually compared the fitted and observed values. I calculated
these intervals using the standard deviation given in the output of the "auto.arima"

function, for a 95% confidence interval, the bounds are found using
estimate ± 1.96 × σestimate where the estimate is each fitted value in turn. Once the best
model has been identified, confirmed to be suitable, and compared to the observations,
the model can be used to make predictions. To do this I used the "forecast" function107

from the "forecast" package, which constructs forecasts based on the results of
predictions made using the "auto.arima" output108.

4.3.2 Multivariate Time Series Modelling

For the multivariate time series modelling, I fitted a VAR model using a combination of the
three times series described in Section 4.3.1. In a VAR model, each variable is modelled
“as a linear combination of past values of itself and the past values of other variables in
the system”98. This linear combination means that the model assumes that the variables
interact and influence future values.

A VAR(p) model is written as:

Xt = ϕDt +Θ1Xt−1 + ...+ΘpXt−p + ϵt,

where p is the number of lags included, Xt is the vector of m time series, Θi is the matrix
of VAR parameters, and ϵt is the vector of error terms109. In addition, ϕDt is a vector of
deterministic terms which are restricted to the form:

ϕDt = µt = µ0 + µ1t,

where µ0 is a vector of constants that can either be 0, restricted, or unrestricted. And µ1t
is a vector of trends that can either be restricted or unrestricted109.

For example, a trivariate VAR(1) model with an unrestricted constant and no trend would
be:

x1,t = µ0,1 + θ11,1x1,t−1 + θ12,1x2,t−1 + θ13,1x3,t−1 + ϵ1,t

x2,t = µ0,2 + θ21,1x1,t−1 + θ22,1x2,t−1 + θ23,1x3,t−1 + ϵ2,t

x3,t = µ0,3 + θ31,1x1,t−1 + θ32,1x2,t−1 + θ33,1x3,t−1 + ϵ3,t,
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where x1,t, x2,t, and x3,t are the time series, µ0,1, µ0,2, and µ0,3 are unrestricted constants,
ϵ1,t, ϵ2,t, and ϵ3,t are white noise processes, the coefficient θii,l captures the influence of
the lth lag of variable xi on itself, and the coefficient θij,l captures the influence of the lth

lag of variable xj on xi
110.

In matrix form, this VAR(1) can be written as:x1,t

x2,t

x3,t

 =

µ0,1

µ0,2

µ0,3

+

θ11,1 θ12,1 θ13,1
θ21,1 θ22,1 θ23,1
θ31,1 θ32,1 θ33,1

×

xt,t−1

x2,t−1

x3,t−1

+

ϵ1,tϵ2,t
ϵ3,t

 .

Suppose the time series in the model are non-stationary. In that case, we must determine
whether cointegration exists – the presence of cointegration signifies long-run (or long-
term) relationships between variables in a multivariate time series111. Cointegration tells
us that there exists a linear combination of the variables, which is stationary. If we find no
cointegration, then the VAR model should not be used. However, if we find cointegration,
then a Vector Error Correction Model (VECM) should be constructed. The VECM can
then be used to find the cointegrating relationships. These relationships define the linear
combination of the variables, which achieves stationarity.

The VECM for a VAR(p) model is given as:

∆Xt = ϕDt +ΠXt−1 + Γ1∆Xt−1 + ...+ Γp−1∆Xt−p+1 + ϵt,

where ∆ signifies one difference having been taken, Π = Θ1 + ...Θp − 1m is the long-run
impact matrix, with 1m being the m×m dimension identity matrix, and Γk are the short-run
impact matrices given in the following form109:

Γk = −
p∑

j=k+1

Θj, k = 1, ..., p− 1.

The rank, r, of the matrix Π tells us the number of cointegrating relationships in the
multivariate series. That is, if r = 0, then there is no cointegration present. For 0 < r < m
the matrix Π can be written as the product:

Π = αβ′,

where α and β are (m× r) dimension matrices with rank(α) = rank(β) = r.

The VECM can then be written as:

∆Xt = ϕDt + αβ′Xt−1 + Γ1∆Xt−1 + ...+ Γp−1∆Xt−p+1 + ϵt,

where β′Xt ∼ I(0), meaning stationary, since β′ is a matrix of cointegrating vectors109.

For the trivariate VAR(1) example, the VECM would be given as:
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∆x1,t = µ0,1 + α1(β1x1,t−1 + β2x2,t−1 + β3x3,t−1) + ϵ1,t

∆x2,t = µ0,2 + α2(β1x1,t−1 + β2x2,t−1 + β3x3,t−1) + ϵ2,t

∆x3,t = µ0,3 + α3(β1x1,t−1 + β2x2,t−1 + β3x3,t−1) + ϵ3,t.

In matrix form, this VECM can be written as:∆x1,t

∆x2,t

∆x3,t

 =

µ0,1

µ0,2

µ0,3

+

α1β1 + α1β2 + α1β3

α2β1 + α2β2 + α2β3

α3β1 + α3β2 + α3β3

×

xt,t−1

x2,t−1

x3,t−1

+

ϵ1,tϵ2,t
ϵ3,t

 .

From a VECM, it is possible to create a new VAR model which includes the interaction
between the variables described by the cointegration relationships. Using this, we can
model the data appropriately and predict the future behaviour of the system.
To implement the VAR model, I first subsetted the relevant data to span the same period.
Subsetting the data was necessary because the positivity data begins later than the rest of
the data. I then created separate time series out of this data, which had frequency 7, and
then combined these to form one multivariate time series. Once this has been created, it
is important to check for cointegration which is done using the "po.test" function112 from
the "tseries" package113. The "po.test" function computes the Phillips-Ouliaris test112,
which tests the following hypotheses whilst allowing for variability111:

H0: no cointegration exists VS. H1: cointegration exists

Meaning that we assume there is no cointegration and prove otherwise.

Once cointegration has been confirmed, I then used the "VARselect" function114 from the
"vars" package115, to select the best VAR model for the data. The function returns the
best value of p for a VAR(p) model, with the maximum value being 10 by default for each of
four available information criteria. The four criteria are the AIC, HQC, SC, and FPE, which
can be defined as follows:

1. Akaike Information Criterion116: AICVAR = ln(det(Σ̂p) +
2K

n

2. Hannan-Quinn Criterion116: HQCVAR = ln(det(Σ̂p)) +
2Kln(ln(n))

n

3. Schwarz Criterion116: SCVAR = ln(det(Σ̂p)) +
Kln(n)

n

4. Final Prediction Error114: FPEVAR =

(
n+ p∗

n− p∗

)K

det(Σ̂p)

Where,

• n is the sample size,

• K is the number of model parameters,
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• Σ̂p is the maximum likelihood estimator of the error variance Σ at lag p,

• p is the lag order,

• p∗ is the number of parameters in each equation.

I then chose the value of p which corresponded to the lowest value in most of the
information criteria. Using this VAR(p) model, I then constructed the Vector Error
Correction Model (VECM) using the "ca.jo" function117 from the "urca" package118, with
the test type defined as ‘eigen’. This function conducts Johansen’s maximum
eigenvalue test, which is a series of hypothesis tests to find the number of cointegration
relationships119. The first hypothesis test is:

H0: rank(Π) = 0, no cointegration VS. H1: rank(Π) = 1, one cointegration relationship.

This test looks at the largest eigenvalue. If the largest eigenvalue λ1 = 0, then there is no
cointegration. If λ1 ̸= 0, then there is at least one cointegration relationship119 and we go
on to the next hypothesis test:

H0: rank(Π) = 1, one cointegration relationship VS. H1: rank(Π) = 2, two cointegration
relationships.

This test looks at the second largest eigenvalue. If the second largest eigenvalue λ2 = 0,
then there is exactly one cointegration relationship. If λ2 ̸= 0, then there is at least two
cointegration relationships119. This test will be the last conducted, given that there are
three variables the rank(Π) ≤ 2 there can be a maximum of two cointegration
relationships.

After finding the number of cointegration relationships present, I converted the VECM into
a VAR model. I then fitted the subsequent VAR model to the data, which I then used to
make predictions. For this, I used the "predict" function120 from the "stats" package,
which makes recursive forecasts for each variable121.

5 Results

This investigation aimed to determine the effect government policies have on the
transmission of COVID-19. I have first estimated transmission (see Section 4.1 and
Section 4.2), and I have then predicted the future values of key pieces of UK data (see
Section 4.3).

5.1 Deterministic SIR Model Results

Before estimating transmission, I checked the suitability of the deterministic SIR model
for the data.

Figure 10 shows that the SIR model provided a good fit for the data. Overall, the fitted
line followed the observed values very closely, where the blue points signify daily
observations. We see that the fitted values were slightly overestimated at the end of
December 2020 and the beginning of January 2021, but were still a good fit.
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Following this, I then estimated transmission over time using the deterministic SIR model.

Figure 11 shows that Rt significantly decreased during national lockdowns and the
largest impact was the first lockdown. During the first lockdown, Rt fell from Rt ≈ 1.8 to
Rt ≈ 1 and dropped as low as Rt ≈ 0.87 at the beginning of June 2020. Whereas during
the second lockdown, Rt fell from Rt ≈ 1.1 to Rt ≈ 0.9 just as the lockdown was lifted. We
can also observe that Rt was stable at Rt ≈ 1 throughout the warmer summer months
and then became volatile toward the end of September 2020. Another observation we
can make is that after the second lockdown ended, the rate of transmission dropped.
However, transmission rates then rose again in the middle of December 2020. Something
to note is that we see a high amount of volatility at the beginning of the pandemic.

Figure 10: Plot of the fitted and observed data, using the SIR model, where blue points signify daily observed
data points and the red line signifies the fitted data. Plotted using the "ggplot" function from the "ggplot2"

package.
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Figure 11: Plot of Rt over time. Plotted using the "plot" function from the "graphics" package, the blue line
Rt was added using the "lines" function122 from the "graphics" package, and the vertical and horizontal
lines were added using the "abline" function123 from the "graphics" package. A red horizontal line was
added at 1 to indicate when Rt = 1, to show whether the epidemic is growing or decaying. An orange
vertical dashed line was added at March 23rd 2020 to indicate the beginning of the first lockdown and a
green vertical dashed line was added at June 15th 2020 to indicate the end of the first lockdown. An orange
vertical dot-dashed line was added at November 5th 2020 to indicate the beginning of the second lockdown
and a green dot-dashed line was added at December 3rd 2020 to indicate the end of the second lockdown.

5.2 Stochastic Epidemic Model Results

From Section 4.2 we can approximate ws by a serial interval distribution. The
"estimate R" function can implement a variety of these, the two I used were the
parametric distribution (see Section 5.2.1) and the uncertain distribution (see
Section 5.2.2). For estimates of the posterior mean of Rt,τ to be accurate, the function
documentation recommends beginning estimations after there are 12 cases recorded in
total93. For the pandemic data, 12 cases have occurred 23 days after the initial case. The
corresponding date will be on the 21st February 2020, and therefore, it is from
2020-02-21 that I began estimates.

5.2.1 Parametric Serial Interval

For the parametric SI, I assumed ws followed a shifted Gamma distribution with a mean
of 2.3 days and a standard deviation of 1.4 days94. Notably, the serial interval is
considerably shorter than that of similar viruses. The shorter interval is because of
possible pre-symptomatic transmission35 and undetected asymptomatic individuals34.

Figure 12 shows a relatively wide credible interval for the posterior mean of Rt,τ at the
beginning of estimation. The width suggests that the data was less informative at this time
since only 12 cases had occurred when estimations began (see Section 5.2), and hence
there were fewer data available.
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Figure 13 shows the posterior mean of Rt,τ over time, in more detail. We can see that
the estimations appeared to be quite volatile. However, given that the maximum value
taken was Rt,τ ≈ 2.5, small changes in transmission will have been apparent. We can also
see that transmission rates fell during both lockdowns and rates generally rose after the
lockdowns ended. For example, during the first lockdown, transmission fell from Rt,τ ≈ 1.5
to Rt,τ ≈ 1 and fell as low as Rt,tτ ≈ 0.84 in May 2020. After which, we see that rates rose
to Rt,τ ≈ 1.2 by August 2020.

Figure 12: Plot of the output of the "estimate R" function, using a parametric SI. Plotted using the
"estimate R plots" function124 from the "EpiEstim" package and arranged using the "ggarrange"

function from the "ggpubr" package. The top plot shows the confirmed cases incidence data (see Figure 2).
The middle plot shows the posterior mean of Rt,τ for each time window of τ days, with a 95% credible
interval. The bottom plot shows the probability density function (PDF) of the shifted Gamma distribution
which has been explored.
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Figure 13: Plot of the posterior mean of Rt,τ , for the parametric SI during each time window of τ days.
Plotted using the "plot" function from the "graphics" package, the blue line was added using the "lines"

function from the "graphics" package, and the vertical and horizontal lines were added using the "abline"

function from the "graphics" package. A red horizontal line was added at 1 to indicate when the posterior
mean Rt,τ = 1, to show whether the epidemic is growing or decaying. An orange vertical dashed line was
added at March 23rd 2020 to indicate the beginning of the first lockdown and a green vertical dashed line
was added at June 15th 2020 to indicate the end of the first lockdown. An orange vertical dot-dashed line
was added at November 5th 2020 to indicate the beginning of the second lockdown and a green dot-dashed
line was added at December 3rd 2020 to indicate the end of the second lockdown.

Additionally, throughout the second lockdown, transmission fell from Rt,τ ≈ 1.1 to
Rt,τ ≈ 1, and fell as low as Rt,τ ≈ 0.9 near the end of November 2020. After which rates
rose to Rt,τ ≈ 1.25 within two weeks. From July 2020 until September 2020, we see that
transmission rates were closer to 1, likely due, in part, to the warmer weather and
consequently more people being outside. However, from September 2020 until the
implementation of the second lockdown in November 2020, we see that transmission
rates were higher.

5.2.2 Uncertain Serial Interval

For the uncertain SI, I assumed ws followed a shifted Gamma distribution with unknown
(uncertain) mean and standard deviation. The "estimate R" function calculates the
posterior distribution of Rt,τ for n1 combinations of values for the mean and standard
deviation. The mean, µ, and standard deviation, σ, are sampled from truncated (or
restricted) normal distributions95, with the mean number of days µ ∼ N(7.5, 22) in the
range (2.3, 8.4) days94, and the standard deviation of days σ ∼ N(3.4, 12) in the range
(0.5, 4) days94. I set the number of distributions (combinations of µ and σ) as n1 = 750,
and the number of posterior samples to be drawn for each distribution as n2 = 750.
These were chosen to allow to balance accuracy and computation time.
Figure 14 shows higher values and a wider credible interval for Rt,τ than Figure 12. The
wider interval means that the data provided less information about transmission. However,
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we expect this given that the distribution was, by definition, uncertain. We can also see that
many of the shifted Gamma distributions appear to have had a mean µ ≈ 5 days, which
suggests that the mean defined in Section 5.2.1 was too low. However, simply changing
the mean in the parametric SI will not improve accuracy since the standard deviation is
still unknown and is more difficult to ascertain from Figure 14.

Figure 14: Plot of the output of the "estimate R" function, using an uncertain SI. Plotted using the
"estimate R plots" function from the "EpiEstim" package and arranged using the "ggarrange" function
from the "ggpubr" package. The top plot shows the confirmed cases incidence data (see Figure 2). The
middle plot shows the posterior mean of Rt,τ during each time window of τ days, with a 95% credible interval.
The bottom plot shows the probability density functions (PDF) of the shifted Gamma distribution which have
been explored.

Figure 15 shows the posterior mean of Rt,τ was much higher than when the parametric
SI was used (see Figure 13). For example, at the beginning of March 2020, the uncertain
distribution estimated Rt,τ ≈ 9.5, when the parametric distribution estimated Rt,τ ≈ 2.5. As
we saw in previous estimates of transmission (see Figure 11 and Figure 13), the rate of
transmission fell during lockdowns. From this result, we can suggest that lockdowns may
have effectively reduced transmission. During the first lockdown, rates fell from Rt,tau ≈ 2.8
to Rt,τ ≈ 0.8, and during the second lockdown, rates fell from Rt,τ ≈ 1 to Rt,τ ≈ 0.8. At
the end of both lockdowns, just before they ended, the rate of transmission fell as low
as Rt,τ ≈ 0.68. We can also observe that after both lockdowns, the rate of transmission
increased. After the first lockdown, rates rose above 1 within a month, and after the
second lockdown, rates rose above 1 within a week – suggesting that the lockdown was
not in place long enough. In general, we can see that transmission rates were only below
1 during, or not long after, a lockdown.
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Figure 15: Plot of the posterior mean of Rt,τ , for the uncertain SI during each time window of τ days. Plotted
using the "plot" function from the "graphics" package, the blue line was added using the "lines" function
from the "graphics" package, and the vertical and horizontal lines were added using the "abline" function
from the "graphics" package. A red horizontal line was added at 1 to indicate when the posterior mean
Rt,τ = 1, to show whether the epidemic is growing or decaying. An orange vertical dashed line was added at
March 23rd 2020 to indicate the beginning of the first lockdown and a green vertical dashed line was added
at June 15th 2020 to indicate the end of the first lockdown. An orange vertical dot-dashed line was added
at November 5th 2020 to indicate the beginning of the second lockdown and a green dot-dashed line was
added at December 3rd 2020 to indicate the end of the second lockdown.

5.2.3 Comparison of Serial Intervals

To ascertain the impact of the distribution of ws on the estimates of transmission, I have
compared the findings from the parametric serial interval (detailed in Section 5.2.1) and
the uncertain serial interval (specified in Section 5.2.2).

Figure 16 shows that the posterior means of Rt,τ were very similar between the two
distributions. Whilst we see different posterior means at the beginning of estimations, we
expect this as there was less information at this point. We can see that from mid-April
2020, the values followed very closely with each other and that even the credible intervals
overlapped. We can also see that the apparent volatility in Figure 13 no longer appeared,
due to the maximum value being Rt,τ ≈ 22 from the uncertain SI credible interval.
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Figure 16: Plot of the posterior means of Rt,τ from both the parametric and uncertain distributions. Plotted
using the "estimate R plots" function from the "EpiEstim" package. The parametric SI is indicated by the
blue line and the uncertain SI is indicated by the red line. The associated credible intervals are indicated by
the respective coloured fillings.

5.3 Time Series Modelling Results

Using seasonal ARIMA and VAR models, I have predicted the future values of confirmed
cases, positivity rate, and transmission rate under the assumption that the government
introduced no further mitigation measures.

5.3.1 Univariate Time Series Modelling – Confirmed Cases

The first variable modelled was the daily confirmed cases, with weekly seasonality. The
most suitable model identified through the "auto.arima" function from the "forecast"

package was a SARIMA(0, 1, 4)(1, 0, 0)7 model. For the confirmed cases, the non-seasonal
behaviour can be modelled by an ARIMA(0, 1, 4) model. This information shows that the
data was non-stationary, as there is an integration term. It also shows that the error terms
of the previous four observations influenced current observations. The seasonal behaviour
can be modelled by an ARIMA(1, 0, 0) model. This information shows that the value of the
previous observation influenced the current observation.

This model can be written as:

(1− Φ1B
7)(1−B7)xt = (1 + θ1B + θ2B

2 + θ3B
3 + θ4B

4)ϵt.

Using the results from the R code, I found these values to three decimal places:

(1− 0.879B7)(1−B7)xt = (1− 0.466B − 0.157B2 + 0.415B3 − 0.535B4)ϵt.
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I then compared the fitted model to the daily confirmed cases data to determine the
suitability of the model.

Figure 17 shows that the fitted values followed the observed values very closely. We
can see that the confidence interval for the fitted values was seemingly quite wide, which
means that the model was not very well informed. We can see that as the number of
daily confirmed cases rose, the confidence interval narrowed. This narrowing occurred
because as the fitted values increased, the standard deviation influenced the estimates
less.

Following this, I used the model to make predictions about the daily number of confirmed
cases for the next 7 days.

Figure 18 shows that if the government introduced no new policies, then the daily number
of confirmed cases would increase over the next week. The predictions show that
confirmed cases may have reached as high as approximately 96, 200 without new
mitigation strategies. We see that whilst there wouldn’t be a consistent increase, the
number of daily confirmed cases would reach higher than in the previous week. In
general, we see there was an upward trend in the number of daily confirmed cases
towards the end of the study period, this is reflected by the rise in the predictions.

To determine the accuracy of these predictions, I then compared the predicted values to
the observed values.

Figure 19 shows us that the predicted number of new confirmed cases was higher than
the actual number. However, we can see that the observed values followed a similar
pattern to that of the predicted. At the end of the predictions, the trend was upward,
whereas the actual number of cases was trending downwards. A possible impact on the
observed number of cases was that the UK Government announced a third lockdown on
the 4th January 2021125. The implementation of this lockdown may have reduced the
number of people requiring coronavirus tests. Additionally, we see there was a spike in
the number of confirmed cases towards the end of the data, which may have influenced
the predictions.
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Figure 17: Plot of the univariate time series of daily confirmed cases, with fitted and observed values.
Plotted using the "plot" function from the "graphics" package, the fitted values were added using the
"lines" function from the "graphics" package, and the confidence interval was added using the "polygon"

function126 from the "graphics" package.

Figure 18: Plot of the predictions of daily confirmed cases from the univariate time series model. The
blue dashed line indicates predictions, with the prediction interval in grey. Plotted using the "autoplot"

function127 from the "forecast" and "ggfortify" packages128.
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Figure 19: Plot of the comparison between the predicted and observed confirmed cases from the univariate
time series model. The blue dashed line indicates predictions, with the prediction interval in grey, and
the red line indicates observed values. Plotted using the "autoplot" function from the "forecast" and
"ggfortify" packages and the "geom line" function129 from the "ggplot2" package.

5.3.2 Univariate Time Series Modelling – Positivity Rate

The second variable modelled was the daily positivity rate, with weekly seasonality. The
most suitable model identified through the "auto.arima" function from the "forecast"

package was a SARIMA(2, 1, 0)(1, 0, 2)7 model. For the positivity rate, the non-seasonal
behaviour can be modelled by an ARIMA(2, 1, 0) model. This information shows that the
data was non-stationary, as there is an integration term. It also shows that the values of
the previous two observations influenced the current value. The seasonal behaviour can
be modelled by an ARIMA(1, 0, 2) model, which shows that the previous observation and
the error terms of the previous two observations influenced the current value.

This model can be written as:

(1− ϕ1B − ϕ2B
2)(1− Φ1B

7)(1−B)xt = (1 + Θ1B
7 +Θ2B

14)ϵt.

Using the results from the R code, I found these values to three decimal places:

(1 + 0.424B + 0.373B2)(1− 0.834B7)(1−B)xt = (1− 0.273B7 + 0.449B14)ϵt.

I then compared the fitted model to the daily positivity rate data to determine the
suitability of the model.
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Figure 20 shows that the fitted values followed the observed values quite closely. We can
see that the confidence interval for the fitted values was quite wide, with it becoming
narrower when the positivity rate was higher. When the fitted value was small, the
standard deviation had more influence on the width of the confidence interval.

Following this, I used the model to make predictions about the daily positivity rate over
the next 7 days.

Figure 20: Plot of the univariate time series of positivity rate, with fitted and observed values. Plotted using
the "plot" function from the "graphics" package, the fitted values were added using the "lines" function,
and the confidence interval was added using the "polygon" function from the "graphics" package.

Figure 21 shows that if the government introduced no new policies, then the daily positivity
rate would vary over the next week. The predictions show that the rate may have reached
approximately 0.2 without new mitigation strategies. We see that the volatile nature of the
positivity rate would continue. We also see that, in general, the positivity rate would be
high.
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Figure 21: Plot of the predictions of positivity rate from the univariate time series model. The blue dashed
line indicates predictions, with the prediction interval in grey. Plotted using the "autoplot" function from the
"forecast" and "ggfortify" packages128.

To determine the accuracy of these predictions, I then compared the predicted values to
the observed values.

Figure 22 shows us that the predicted positivity rate was higher than the actual positivity
rate. However, we can see that the observed values followed a similar pattern to that of
the predictions. The predicted values exhibited more volatility than the true values, which
appear to have been at a turning point. The observed values remained lower when
compared to the predicted values at the end of the predictions. As suggested in
Section 5.3.1, this may have been due to the lockdown, which came into effect on the 5th

January 2021125, as it may have limited the number of people getting tested. The
lockdown may have lowered the number of symptomatic individuals getting tested as they
were staying home anyway and hence felt a test was unnecessary.
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Figure 22: Plot of the comparison between the predicted and observed positivity rate from the univariate time
series model. The blue dashed line indicates predictions, with the prediction interval in grey, and the red line
indicates observed values. Plotted using the "autoplot" function from the "forecast" and "ggfortify"

packages and the "geom line" function129 from the "ggplot2" package.

5.3.3 Univariate Time Series Modelling – Transmission Rate

The third variable modelled was daily transmission rate, with weekly seasonality. The
most suitable model identified through the "auto.arima" function from the "forecast"

package was a SARIMA(1, 1, 1)(2, 0, 1)7 model. For the transmission rate, the
non-seasonal behaviour can be modelled by an ARIMA(1, 1, 1) model. This information
shows that the data was non-stationary, as there is an integration term. It also shows that
both the value and error term of the previous observation influence the current value. The
seasonal behaviour can be modelled by an ARIMA(2, 0, 1) model, which shows that the
values of the previous two observations and the error term of the previous observation
influenced the current value.

This model can be written as:

(1− ϕ1B)(1− Φ1B
7 − Φ2B

14)(1−B)xt = (1 + θ1B +Θ1B
7)ϵt.

Using the results from the R code, I found these values to three decimal places:

(1− 0.550B)(1 + 1.111B7 + 0.386B14)(1−B)xt = (1− 0.757B + 0.864B7)ϵt.

I then compared the fitted model to the daily transmission rate data to determine the
suitability of the model.
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Figure 23 shows that the fitted values followed the observed values quite closely. We can
see that the confidence interval for the fitted values was quite wide, with it being widest
when transmission rates were lower. The interval became wider because when the fitted
value was larger, the influence of the standard deviation was smaller.

Figure 23: Plot of the univariate time series of transmission rate Rt, with fitted and observed values. Plotted
using the "plot" function from the "graphics" package, the fitted values were added using the "lines"

function from the "graphics" package, and the confidence interval was added using the "polygon" function
from the "graphics" package.

Following this, I then used the model to make predictions about the daily transmission rate
over the next 7 days.

Figure 24 shows that if the government introduced no new policies, then the daily
transmission rate would increase over the next week. We see that whilst predictions
show there would be an initial decrease, the transmission rate would increase overall.
Predictions show that the transmission rate may have reached as high as Rt ≈ 1.25
without new mitigation strategies. We can suggest that the prediction interval was large
because the confidence interval was wider towards the end of observations. From the
prediction interval, we see that transmission could have fallen to Rt ≈ 0.9, or risen to
RT ≈ 1.4.

To determine the accuracy of these predictions, I then compared the predicted values to
the observed values.
Figure 25 shows the predicted transmission rate was lower than the actual transmission
rate. It is worth noting that the observed rate of transmission was almost always within the
prediction interval. While in the predicted values, we see a dip and then an upward trend,
we see the reverse in the observed values. We expect transmission rates to fall during a
lockdown (as seen in Figure 11, Figure 13, and Figure 15) which explains the fall in the
observed transmission rate toward the end of the prediction interval.
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Figure 24: Plot of the predictions of transmission rate Rt from the univariate time series model. The blue
dashed line indicates predictions, with the prediction interval in grey. Plotted using the "autoplot" function
from the "forecast" and "ggfortify" packages128.

Figure 25: Plot of the comparison between the predicted and observed transmission rate from the univariate
time series model. The blue dashed line indicates predictions, with the prediction interval in grey, and
the red line indicates observed values. Plotted using the "autoplot" function from the "forecast" and
"ggfortify" packages and the "geom line" function129 from the "ggplot2" package.
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5.3.4 Multivariate Time Series Modelling

Finally, I modelled the three variables (daily confirmed cases, positivity rate, and
transmission rate) together as a multivariate time series. The most suitable model
identified by the "VARselect" function from the "vars" package was a VAR(10) model. A
VAR(10) model means that the previous ten observations of each variable influenced the
current value. I then ran the Phillips-Ouliaris test and found there was cointegration
present. This result meant that the variables had a “long-run statistically significant
relationship”98, i.e. the variables influenced each other. Following this, I ran Johansen’s
maximum eigenvalue test using the "ca.jo" function from the "urca" package, and
found one cointegrating relationship. This function also gave the VECM, which
implements the cointegrating relationship found, that I then converted back into a new
VAR model.

This final VAR model can be written as:

x1,t

x2,t

x3,t

 =

µ0,1

µ0,2

µ0,3

+
θ11,1 θ12,1 θ13,1
θ21,1 θ22,1 θ23,1
θ31,1 θ32,1 θ33,1

×
xt,t−1

x2,t−1

x3,t−1

+...+

θ11,10 θ12,10 θ13,10
θ21,10 θ22,10 θ23,10
θ31,10 θ32,10 θ33,10

×
xt,t−10

x2,t−10

x3,t−10

+
ϵ1,tϵ2,t
ϵ3,t

 .

Using the results from the R code, I found these values to three decimal places:x1,t

x2,t

x3,t

 =

 0.258
−1734.773
−0.001

+

 0.418 0 −0.559
−14092.736 0.163 111065.201
−0.049 0 1.104

×

x1,t−1

x2,t−1

x3,t−1


+

 0.166 0 0.362
−552.441 0.618 −137795.519
−0.003 0 −0.225

×

x1,t−2

x2,t−2

x3,t−2

+

 0.089 0 −1.544
−7305.020 0.096 43291.538

0.005 0 −0.137

×

x1,t−3

x2,t−3

x3,t−3


+

 0.097 0 1.686
−4587.210 −0.184 54903.166
−0.002 0 0.355

×

x1,t−4

x2,t−4

x3,t−4

+

 −0.177 0 0.436
15285.315 0.014 30022.742
0.033 0 0.011

×

x1,t−5

x2,t−5

x3,t−5


+

 −0.019 0 −0.756
−14031.214 0.641 −97765.222
−0.045 0 −0.006

×

x1,t−6

x2,t−6

x3,t−6

+

 0.229 0 0.074
24571.438 0.553 65966.612
0.077 0 0.396

×

x1,t−7

x2,t−7

x3,t−7


+

 0.074 0 −0.477
1974.084 −0.176 −101419.311
0.034 0 −0.477

×

x1,t−8

x2,t−8

x3,t−8

+

 −0.063 0 0.050
−10223.236 0.180 −5913.753
−0.045 0 −0.153

×

x1,t−9

x2,t−9

x3,t−9


+

 −0.067 0 0.327
10672.601 −0.914 40338.8256
−0.004 0 0.133

×

x1,t−10

x2,t−10

x3,t−10

+

ϵ1,tϵ2,t
ϵ3,t

 .

I then compared the fitted model to the daily confirmed cases, positivity rate, and
transmission rate data to determine the suitability of the model.
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Figure 26 shows that the fitted values followed the observed values quite closely for each
variable. We see that fitted values started after the beginning of the observations, due to
the large value of p in the VAR(p) model.

Following this, I used the model to make predictions about the daily number of confirmed
cases, positivity rate, and transmission rate over the next 7 days.
Figure 27 shows that if the government introduced no new policies, then the daily number
of new confirmed cases would increase over the next week. We see that whilst the
increase would not be constant, the predictions had a general upward trend. Predictions
show that the daily confirmed cases may have reached as high as ≈ 120, 000 without new
mitigation strategies. We also see that the daily positivity rate would continue to vary, and
in the process, it could have reached a higher value than previously seen – up to ≈ 0.3.
Lastly, we can see that the daily transmission rate may have drastically spiked over the
next week, and may have reached as high as Rt ≈ 1.8.

To determine the accuracy of these predictions, I then compared the predicted values to
the observed values.

Figure 28 shows us that the predicted values were higher than the actual values for all
variables. However, we can see that the pattern of the observed values was very similar to
that of the predicted values. We should consider the possible influences of the lockdown
when determining the accuracy of the predictions, i.e. we made predictions under the
assumption that nothing would change and the implementation of policies likely influenced
the observed data.

Figure 26: Plot of the multivariate time series of confirmed cases, positivity rate, and transmission rate, with
fitted and observed values. Plotted separately using the "plot" function from the "graphics" package,
the fitted values were added using the "lines" function from the "graphics" package, and were arranged
using graphical parameters with the "par" function130 from the "graphics" package.
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Figure 27: Plot of the predictions of time series of confirmed cases, positivity rate, and transmission rate,
from the multivariate time series model. The blue dashed line indicates predictions, with the prediction
interval in grey. Plotted using the "autoplot" function from the "forecast" and "ggfortify" packages128.

Figure 28: Plot of the comparison between the predicted and observed confirmed cases, positivity rate, and
transmission rate from the multivariate time series model. The blue dashed line indicates predictions, with
the prediction interval in grey, and the red line indicates observed values. Plotted using the "autoplot"

function from the "forecast" and "ggfortify" packages and the "geom line" function129 from the
"ggplot2" package.
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5.3.5 Comparison of Time Series Models

To discover which model better predicted the behaviour of the data, I have compared
Figure 27 with Figure 18, Figure 21, and Figure 24. By comparing these figures, we see
that predictions from both model types were generally similar. While the predictions for
transmission rates appear to have been quite different, the implications were the same –
transmission rates would increase overall.

To compare the accuracy of the predictions, I have looked at the forecast errors131:

eT+h = yT+h − ŷT+h|T ,

where T is the time of the last observation, h is the number of steps ahead, eT+h is the
error at time T + h, yT+h is the observed value at time T + h, and ŷT+h is the predicted
value at time T + h.

Table 2 shows that the residuals were negative when the predicted values were higher
than the observed values. We see that the majority of the residuals found were negative,
regardless of the model type. The sign of the values may have been due to the
implementation of the national lockdown on the 5th January 2021125. We can also see
that the residuals were quite variable throughout the predictions, and therefore so was
the difference between them. We can infer that, in general, no one model type had
smaller residuals in magnitude. However, those from the multivariate model were often
larger than from the univariate models. This finding implies that the predictions from the
multivariate model were less accurate.

Table 2: Forecast errors for both the univariate and multivariate models

Day Confirmed Cases Positivity Rate Transmission Rate
Univariate Multivariate Univariate Multivariate Univariate Multivariate

1 26, 089.008 − 9, 161.406 0.039 −0.002 0.021 −0.149
2 −24, 781.470 −43, 188.695 −0.065 −0.132 0.076 −0.565
3 −16, 922.802 −31, 589.298 −0.046 −0.049 0.312 −0.226
4 −10, 412.021 −14, 662.154 −0.022 −0.030 0.018 −0.317
5 3, 081.766 6, 325.316 −0.001 0.047 −0.044 0.117
6 −29, 970.074 −11, 813.359 −0.111 −0.038 −0.080 −0.007
7 −28, 133.588 −34, 379.264 −0.081 −0.075 −0.062 −0.095

To verify this finding, I compared Figure 19, Figure 22, and Figure 25 with Figure 28. By
comparing these figures, we see that the multivariate time series appeared to have
predicted future behaviour more accurately. This conclusion is logical because a higher
transmission rate would lead to higher confirmed cases and hence positivity rate.
Therefore, modelling the three variables together should more accurately predict the
behaviour of the variables. Whilst the residuals were larger for the multivariate model, the
predicted behaviour appears to have been more accurate. The multivariate model may
have overestimated the predictions due to the new mitigations strategies reducing the
true values.
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6 Contrasting Approaches

By looking at other approaches taken by different nations, I was able to look closer at
the impact of government policy on transmission rates. From research based at The
Oxford Martin Programme132, it was possible to retrieve data regarding confirmed cases
and deaths from around the world133. This investigation focused on New Zealand and
Brazil as comparisons with the UK approach.

6.1 New Zealand

The first country that provided a good comparison was New Zealand. To make this
comparison, I first identified differences between approaches. Then, through data
visualisation, I explored infections and transmission rates.

6.1.1 Key Policy Differences

The first notable difference between the policies implemented in New Zealand, and those
implemented in the UK, was the border controls placed on the nation. On the 3rd

February, New Zealand placed flight bans on foreigners entering from China.
Additionally, they placed self-isolation orders on residents re-entering the country from
China134. After extending these policies to other affected countries, it was on the 14th

March 2020 that a policy required everyone entering New Zealand to self-isolate for 14
days135. Following this, on the 20th March 2020, borders were officially closed to all but
New Zealand citizens and residents136. These border controls gave the country the ability
to monitor where cases were – and their sources. For example, over 50% of their cases
were imported137 and identified at the border. Another noteworthy difference was the
lockdown policy which New Zealand introduced, which aimed for elimination from the
start134. The four-tier system was introduced on the 21st March 2020, and the country
entered Alert Level Four (the highest level) on the 25th March 2020138. On the 4th May
2020, after moving to Alert Level Three, New Zealand saw no new cases. Subsequently,
the country moved to Alert Level Two on the 14th May 2020138. By the 8th June 2020,
New Zealand had no ‘active’ cases of COVID-19 and moved down to Alert Level One the
next day138. Note that in New Zealand, ‘recovered’ individuals were “people who had the
virus, where at least 10 days have passed since their symptoms started and they have
not had symptoms for 72 hours, and they have been cleared by the health professional
responsible for their monitoring”139. We saw the differences in approach clearly, in the
actions taken by the New Zealand Government when they found four new cases in the
community. After discovering the cases in Auckland, the government responded by
raising the lockdown level for the whole country to Alert Level Two and Auckland was
raised to Alert Level Three138. It was then on the 21st September 2020 that the country
was moved back down to Alert Level One, with Auckland being moved to Alert Level Two
on the 23rd September 2020 and then joined the rest of the country at Alert Level One on
the 1st October 2020138. Finally, a large difference between approaches was the public’s
confidence in them. Not only did the World Health Organisation praise the country’s
response, but polls also found that more than 80% of New Zealanders agreed with the
measures the government were taking134.
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6.1.2 Data Visualisation

To build an understanding of infections in New Zealand, I first explored the confirmed
cases.

Figure 29 shows most of the confirmed cases were in April 2020 and May 2020, exhibiting
a clear spike in infections. We can see that throughout most of June 2020, there were
no new cases and that from July 2020, there was a small number of new infections daily.
We can also see in September 2020, there was a jump in the number of daily confirmed
cases, and that numbers remained slightly elevated for the rest of the study period. Even
at the peak of infections, New Zealand saw no more than 89 cases a day.

Following this, I modelled transmission rates to provide a deeper comprehension of the
pandemic. To calculate transmission, I used a deterministic SIR model (see Section 4.1)
and a stochastic epidemic model (see Section 4.2).

Figure 30 shows that the fitted values followed the observed values closely. We can see
that the number of currently infected peaked in May 2020 at 340, and there was a small
peak in September 2020. Due to the different definitions of ‘recovered’ (see Section 6.1.1),
the number of currently infected does not reach zero even when there were no ‘active’
cases, according to the New Zealand Government.

After I confirmed that the deterministic SIR model was appropriate, I then estimated
transmission over time.
Figure 31 shows there was a drop in Rt in mid-March 2020, likely due to the low number
of new cases being reported after the initial one (see Figure 29). We can see that the rate
of transmission peaked in April 2020 at Rt ≈ 4.20 and fell sharply afterwards, to below 1 in
May 2020. Throughout June 2020, we see an upward trend in Rt with it having reached
Rt ≈ 1.4 in July 2020, after which it remained at ≈ 1. Following this, in September 2020,
there was a spike in transmission rates which peaked at Rt ≈ 1.75. We then see that rates
fell and went below 1 in October 2020. Subsequently, Rt remained close to 1 for most of
the remainder of the study period.

I then used the stochastic epidemic model to further estimate transmission rates.

Figure 32 shows a wide credible interval around June 2020 to July 2020, which indicates
that the posterior was less informed at this time. This lack of information was because
when new cases started to appear in late June 2020, there had been no new cases for
most of that month. Due to this, the posterior had little information when the new cases
occurred.

Figure 33 shows the posterior mean of Rt,τ fell from April 2020 until June 2020, where
we see there was a sharp rise. At the end of June 2020, rates peaked, with a dramatic
spike at Rt,τ ≈ 15, and then fell throughout July 2020. Subsequently, in August 2020, we
see there was a slight rise in the rate of transmission. Following this rise, we see a spike,
which peaked at Rt,τ ≈ 4, returning to 1 in September 2020. From this point, the rate of
transmission remained around 1 on the whole, other than a spike in November 2020 with

402



The Plymouth Student Scientist, 2021, 14, (2), 356-428

it reaching Rt,τ ≈ 2.5.

Figure 34 shows credible interval was wider at the beginning of estimations, from June
2020 to July 2020, and at the end of August 2020. The interval widened when there was a
drastic increase in the number of confirmed cases. The first occurrence of this was when
COVID-19 was beginning to circulate. The second occurrence was when there had been
no new infections for a while. The third and final occurrence was when there was a spike
in the number of cases. These occurrences suggest that when there were low amounts of
infections in the population, estimations were less informed.

Figure 35 shows the posterior mean Rt,τ was ≈ 6.75 in April 2020, after which it began
to fall. From the end of April 2020 we see Rt,τ below 1, where it remained until mid-June
2020. At the end of June 2020 the rate rose quickly, and peaked at Rt,τ ≈ 13 at the end
of the month. We then see that rates fell throughout July 2020 to below 1, having spiked
twice in August 2020 at Rt,τ ≈ 3 and Rt,τ ≈ 5 respectively. From September 2020, we can
observe that Rt,τ ≈ 1 apart from a spike in November 2020 where it reached Rt,τ ≈ 3.25.

Figure 36 shows that the parametric and uncertain distributions followed a similar
pattern. We see that the credible interval for the uncertain distribution was wider than the
parametric, which we expect due to the nature of the distribution. We also see that a wide
credible interval accompanied the spike at the end of June 2020. This spike was likely
due to there being no new cases for 28 days before. This width means that the model had
very little information to form the posterior distribution, and hence the credible interval
became wider.

Figure 29: Incidence plot of daily confirmed cases in New Zealand. Plotted using the "plot" function
from the "graphics" package. The data was manipulated using the "uncount" function from the "tidyr"

package with weights = ‘confirmed’ and the "incidence" function from the "incidence" package.
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Figure 30: Plot of the fitted and observed data for New Zealand, using the SIR model, where blue points
signify daily observed data points and the red line signifies the fitted data. Plotted using the "ggplot"

function from the "ggplot2" package.

Figure 31: Plot of Rt over time for New Zealand. Plotted using the "plot" function from the "graphics"

package, the blue line was added using the "lines" function from the "graphics" package, and the vertical
lines were added using the "abline" function from the "graphics" package. A red horizontal line was
added at 1 to indicate when Rt = 1, to show whether the epidemic is growing or decaying.

404



The Plymouth Student Scientist, 2021, 14, (2), 356-428

Figure 32: Plot of the output of the "estimate R" function, using a parametric SI for New Zealand.
Plotted using the "estimate R plots" function124 from the "EpiEstim" package and arranged using the
"ggarrange" function from the "ggpubr" package. The top plot shows the confirmed cases incidence data
(see Figure 29). The middle plot shows the posterior mean of Rt,τ during each time window of τ days, with
a 95% credible interval. The bottom plot shows the probability density function (PDF) of the shifted Gamma
distribution which has been explored.

Figure 33: Plot of the posterior mean of Rt,τ for New Zealand, for the parametric SI during each time window
of τ days. Plotted using the "plot" function from the "graphics" package, the blue line was added using
the "lines" function from the "graphics" package, and the horizontal line was added using the "abline"

function from the "graphics" package. A red horizontal line was added at 1 to indicate when the posterior
mean Rt,τ = 1, to show whether the epidemic is growing or decaying.
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Figure 34: Plot of the output of the "estimate R" function, using an uncertain SI for New Zealand.
Plotted using the "estimate R plots" function from the "EpiEstim" package and arranged using the
"ggarrange" function from the "ggpubr" package. The top plot shows the confirmed cases incidence data
(see Figure 29). The middle plot shows the posterior mean of Rt,τ during each time window of τ days, with
a 95% credible interval. The bottom plot shows the probability density functions (PDF) of the shifted Gamma
distribution which have been explored.

Figure 35: Plot of the posterior mean of Rt,τ for New Zealand, for the uncertain SI during each time window
of τ days. Plotted using the "plot" function from the "graphics" package, the blue line was added using
the "lines" function from the "graphics" package, and the horizontal line was added using the "abline"

function from the "graphics" package. A red horizontal line was added at 1 to indicate when the posterior
mean Rt,τ = 1, to show whether the epidemic is growing or decaying.
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Figure 36: Plot of the posterior means of Rt,τ from both the parametric and uncertain distributions for New
Zealand. Plotted using the "estimate R plots" function from the "EpiEstim" package. The parametric
SI is indicated by the blue line and the uncertain SI is indicated by the red line. The associated credible
intervals are indicated by the respective coloured fillings.

6.2 Brazil

The second country which provided a good comparison was Brazil. To make this
comparison, I identified differences in approach. After this, I used data visualisation to
explore infections and transmission rates.

6.2.1 Key Policy Differences

The principal difference between the approach taken in Brazil, and that taken in the UK,
was the lockdown policies. Brazil did not have a national lockdown at any point, and only
certain municipalities held local lockdowns, which residents protested140. Not only this,
but President Bolsonaro repeatedly downplayed the risks posed by COVID-19 and
pushed municipalities to lift their restrictions141. By the 20th June 2020, Brazil was the
second country in the world to surpass one million cumulative cases140, and on the 7th

July 2020 President Bolsonaro tested positive for COVID-19142. While Brazil saw record
high case numbers, experts questioned whether the actual number of cases was higher
due to a lack of testing140. Researchers found in April 2020 that the actual number of
cases could have been up to eight times higher than published143 and studies in
November 2020 found that the number could have been ten to twelve times higher than
reported144. Testing strategies marked another difference between approaches. A report
published in September 2020, when Brazil had recorded more than four million
cumulative cases, found that officials had distributed less than one-third of the available
PCR tests145. Another difference between approaches was the evolution of border
controls. In March 2020, Brazil restricted the entry of foreigners by any means. However,
from the 29th July 2020 restrictions no longer applied to air travel146. This change was
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influential because of the proportion of travel that occurs via air and the fact that Brazil did
not impose quarantine measures on those entering the country146. Finally, an important
difference between approaches was the public’s confidence in them. In April 2020, whilst
individual municipalities were trying to implement safety measures, President Bolsonaro
joined anti-lockdown protests, describing the participants as “patriots”147. A month later,
in May 2020, officials estimated that less than 50% of people were following self-isolation
requests by São Paulo officials, one of the country’s worst-hit areas148.

6.2.2 Data Visualisation

To build an outline of the pandemic in Brazil, I initially inspected the confirmed cases.

Figure 37 shows that the number of daily confirmed cases did not fall below ≈ 8000 from
mid-May 2020. We can see four dates with 0 confirmed cases reported and a high
number of cases the following day, which was likely due to issues with reporting. We also
see a downward trend in infections from August 2020 until it trended upward in November
2020. High levels of immunity gained throughout the beginning of the pandemic (see
Section 6.2.1) and the implementation of some preventative measures144 may have
influenced this downward trend. Local authorities cited relaxed restrictions and mass
gatherings as the cause of the rise149 in November 2020.

Figure 38 shows that the fitted values followed the observed values closely. We can see
the number of currently infected peaked in mid-August 2020. We then see that the
number fell until November 2020, where it rose again – and reached higher than before
at 1, 350, 000.

After I confirmed that the deterministic SIR model was appropriate, I then estimated
transmission over time.

Subsequently, I modelled transmission rates to gain a more detailed understanding of the
pandemic. To calculate transmission, I used a deterministic SIR model (see Section 4.1)
and a stochastic epidemic model (see Section 4.2).

Figure 39 shows that transmission rates were highest in late February 2020 at Rt ≈ 4.6,
after which Rt decreased until April 2020. We see that the transmission rate was volatile
throughout April 2020 and the beginning of May 2020 but then settled at Rt ≈ 1 where
it remained the rest of the study period. This result was likely due to the sustained high
level of infections throughout the pandemic. We can observe that transmission rates were
slightly below 1 from August 2020 until the end of October 2020 and slightly above 1 from
November 2020. This slight change in the transmission rate reflects the change from the
downward and upward trend in confirmed cases shown in Figure 37.

I then used the stochastic epidemic model to further estimate transmission rates.

Figure 40 shows that the credible interval was wider at the start of estimations. However,
we see that the interval was very narrow from April 2020. The interval was narrow due to
the high levels of infections informing the posterior, and the interval remained so
throughout the study period.

Figure 41 shows the posterior mean Rt,τ fell in March 2020 from Rt,τ ≈ 2.2 and plateaued
in June 2020 around Rt,τ ≈ 1.1. We can see that the transmission rate appeared to be
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quite volatile throughout. However, the maximum value taken was quite small, meaning
minor changes in transmission rates were apparent. We can also see that posterior mean
Rt,τ was below 1 more often from July 2020 until mid-November 2020, where it rose above
1 more frequently.

Figure 42 shows a wide credible interval throughout March 2020, which narrowed in April
2020. By May 2020, the interval was very narrow. This narrowing shows us that the
posterior became better informed throughout the study, which is unsurprising as the
number of confirmed cases remained quite high for the extent of the study period.

Figure 43 shows the rate of transmission was highest in March 2020 at posterior mean
Rtt, τ ≈ 7.8 and fell consistently from April 2020 until mid June 2020, where it stabilised
at Rt,τ ≈ 1. We can see that from August 2020 until mid-November 2020, transmission
rates were mostly below 1. Subsequently, Rt,τ was almost entirely above 1 until the end of
December 2020.

Figure 37: Incidence plot of daily confirmed cases in Brazil, plotted using the "plot" function from the
"graphics" package. The data was manipulated using the "uncount" function from the "tidyr" package
with weights = ‘confirmed’ and the "incidence" function from the "incidence" package.
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Figure 38: Plot of the fitted and observed data for Brazil, using the SIR model, where blue points signify
daily observed data points and the red line signifies the fitted data. Plotted using the "ggplot" function from
the "ggplot2" package.

Figure 39: Plot of Rt for Brazil. Plotted using the "plot" function from the "graphics" package, the blue
line was added using the "lines" function from the "graphics" package, and the horizontal line was added
using the "abline" function from the "graphics" package. A red horizontal line was added at 1 to indicate
when Rt = 1, to show whether the epidemic is growing or decaying.
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Figure 40: Plot of the output of the "estimate R" function, using a parametric SI for Brazil. Plotted using
the "estimate R plots" function124 from the "EpiEstim" package, and arranged using the "ggarrange"

function from the "ggpubr" package. The top plot shows the confirmed cases incidence data (see
Figure 37). The middle plot shows the posterior mean of Rt,τ during each time window of τ days, with
a 95% credible interval. The bottom plot shows the probability density function (PDF) of the shifted Gamma
distribution which has been explored.

Figure 41: Plot of the posterior mean of Rt,τ for Brazil, for the parametric SI during each time window of τ
days. Plotted using the "plot" function from the "graphics" package, the blue line was added using the
"lines" function from the "graphics" package, and the horizontal line added using the "abline" function
from the "graphics" package. A red horizontal line was added at 1 to indicate when the posterior mean
Rt,τ = 1, to show whether the epidemic is growing or decaying.
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Figure 42: Plot of the output of the "estimate R" function, using an uncertain SI for Brazil. Plotted using the
"estimate R plots" function from the "EpiEstim" package, and arranged using the "ggarrange" function
from the "ggpubr" package. The top plot shows the confirmed cases incidence data (see Figure 37). The
middle plot shows the posterior mean of Rt,τ during each time window of τ days, with a 95% credible interval.
The bottom plot shows the probability density functions (PDF) of the shifted Gamma distribution which have
been explored.

Figure 43: Plot of the posterior mean of Rt,τ for Brazil, for the uncertain SI during each time window of
τ days. Plotted using the "plot" function from the "graphics" package, the blue line was added using
the "lines" function from the "graphics" package, and the horizontal line was added using the "abline"

function from the "graphics" package. A red horizontal line was added at 1 to indicate when the posterior
mean Rt,τ = 1, to show whether the epidemic is growing or decaying.
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Figure 44 shows that at first, the uncertain distribution estimated higher values. We can
see that the credible interval was much wider for the uncertain distribution, which we
expect from its definition (see Section 5.2.2). We also see that from mid-June 2020,
estimations of Rt,τ from both distributions followed the same pattern.

Figure 44: Plot of the posterior mean of Rt,τ from both the parametric and uncertain distributions for Brazil.
Plotted using the "estimate R plots" function from the "EpiEstim" package. The parametric SI is indicated
by the blue line and the uncertain SI is indicated by the red line. The associated credible intervals are
indicated by the respective coloured fillings.

7 Discussion

7.1 Principle Findings

Section 3.2 shows there was a rapid rise in infections from December 2020, and Table 1
shows that the maximum number of confirmed cases was much higher than the upper
quartile. This difference suggests that some data was being considered anomalous and
was not included in the upper quartile. If infections continued at the trend seen in January
2021, we could expect the statistics to shift towards larger values. Figure 3 shows that the
number of currently infected individuals in January 2021 was drastically increasing and
had been since December 2020. This rise further demonstrates the growing number of
infections seen in both Figure 1 and Figure 2. From Section 3.4 we can see that testing
increased throughout the study period. If this increase accounted for the higher number
of confirmed cases, we would expect the positivity rate to have either fallen or remained
the same. However, from Figure 8 we can see that this was not the case and that from
December 2020, the rate of positivity had an upward trend. Figure 11 shows that at
the beginning of the pandemic, there was a lot of volatility in the value of Rt, and the
transmission rate was much higher. We can explain this volatility by examining the limited
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number of tests conducted at the beginning of the pandemic, the number of which was not
recorded until May 2020 (see Section 3.4.2).

Figure 11, Figure 13, and Figure 15 show that the rate of transmission was highest in
March 2020, after which we see there was a dramatic increase in the number of new
confirmed cases in Figure 2. The higher transmission rates can be explained by the lack
of measures in place at the start of the year, with many policies not being implemented
until late March 2020. These figures suggest that lockdowns successfully reduced the
transmission rate, especially in the first lockdown. This indicates there was a high level
of community engagement with the lockdown policies. For good community engagement,
there must have been a high level of confidence in leadership. Here, confidence likely
stemmed from the clarity of the lockdown policy. The lockdowns also meant that people
who could not afford to self-isolate (see Section 1.1.3) were more likely to be at home,
meaning fewer people were exposed to infected individuals. Figure 11, Figure 13, and
Figure 15 also show that transmission rates rose in September 2020, and around the
same time, reports found that confidence in leadership had fallen (see Section 1.1.1).
From this, we can suggest that confidence in leadership may have had a notable impact
on transmission rates.

We can also consider the border control policies in place (see Section 1.1.5) as one of
the contributing factors toward why rates have risen. Notably, lockdowns included
harsher restrictions on international travel, which otherwise were relatively relaxed.
Figure 2 shows that a rise in confirmed cases followed a rise in transmission. This delay
appeared to be more pronounced at the beginning of the study period and was likely due
to the methods used to monitor transmission (see Section 1.1.2), which have been
improved throughout the pandemic. The delay in confirmed case numbers may also have
delayed the implementation of policies, and without the correct timing, their influence was
reduced. Another impact on this delay was likely the problems seen with the test and
trace system (see Section 1.1.3), which may have also influenced the rate of
transmission. The problems with the healthcare system (see Section 1.1.4) may have
impacted the implementation of policies. It is possible that during the beginning of the
pandemic, the struggling system contributed to the large numbers of deaths (see
Figure 4), which occurred. Since then, officials have provided additional resources in the
hope that the NHS can avoid further problems. Furthermore, the treatment of COVID-19
patients has evolved, meaning that more people are surviving. From Section 5.3 we can
see that the mitigation strategies in place at the end of the study period were not enough
as predictions suggested that the number of confirmed cases, rate of positivity, and rate
of transmission, would follow an upward trend if the government implemented nothing
new.

When we compare the UK with other countries, we further see the effect of government
policies. If we compare Figure 2 with Figure 29, we can see a clear difference in the
pattern of infections. Firstly, we can see that the peak of infections in New Zealand was
drastically lower than that seen in the UK. The peak of confirmed cases in New Zealand
was lower than even the first quartile of confirmed cases in the UK (as shown in Table 1).
Secondly, we can see that after the peak of infections, New Zealand was able to
successfully reduce case numbers and even when they had new cases discovered,

414



The Plymouth Student Scientist, 2021, 14, (2), 356-428

isolation at the border was implemented (see Section 6.1.1). When comparing the
policies and their impact, we can see that border controls may have contributed to the
success seen in New Zealand. If we look at the difference in public confidence, we see
there were very different attitudes. Whilst 80% of people in New Zealand agreed with
measures being taken (see Section 6.1.1), which suggests a high level of confidence in
leadership, 57% of people in the UK did not believe the government could control the
spread of COVID-19 (see Section 1.1.1). From this, we can infer that public confidence
may have had an impact on the number of infections. If we compare Figure 11 with
Figure 31, we can see that Rt was more regularly below 1 in New Zealand. This result
means that the epidemic spent more time decaying. Whereas, in the UK, Rt was above 1
more regularly. This result tells us that the epidemic spent more time growing. We can
see, when looking at Figure 16 and Figure 36 that transmission rates were much more
volatile in New Zealand. However, here that indicated the low presence of COVID-19
before the identification of new cases.

If we compare Figure 2 with Figure 37, we can see that Brazil sustained a high number
of daily confirmed cases throughout the study period. Whereas in the UK, there was
evidence of infection waves. We also see that it was during lockdowns that cases in the UK
began to fall. From this, we can suggest that lockdown policies may have had an impact
on infections. When we compare the number of cases seen in Brazil regularly with the
upper quartile of confirmed cases in the UK (as shown in Table 1), we see Brazil regularly
exceeded the upper quartile. This difference implies that until recently, the UK saw fewer
confirmed cases than Brazil. When making these comparisons, it is also important to
recall that reports suggested the true number of cases in Brazil could be up to twelve
times higher than reported (see Section 6.2.1). By comparing Figure 11 and Figure 39,
we can see that Rt was more often above 1 in Brazil than in the UK, especially at the
beginning of the pandemic. We also see that Rt went below 1 more regularly in Brazil but
fell further in the UK, meaning that the epidemic decayed faster in the UK. This difference
was likely down to the lockdown policies implemented in the two countries. In the UK,
there were national lockdowns that caused the rate of transmission to fall dramatically.
Whereas in Brazil, there was no national lockdown, and local lockdowns ended quickly.
If we compare Figure 16 with Figure 44, we see similar patterns in the UK and Brazil.
We also see in the UK that the posterior means of Rt,τ settled down to similar values
earlier than in Brazil and that in Brazil, the values were more variable. This variability was
likely down to the inconsistent measures that were in place. This variability suggests that
consistent messaging and policies may have impacted transmission rates. The similarity
we see between transmission rates in the UK and Brazil was likely due to the high number
of cases seen in both countries.

7.2 Strengths and Limitations

By exploring a variety of sources for the qualitative data (information on government
policies), I was able to gain different insights. For example, by looking directly at
government publications, it was possible to look at the details of policies. However, by
looking at news articles, we could get a sense of public opinion. Additionally, by
comparing the approach in the UK with that of other countries, it was possible to
strengthen my conclusions. With the use of two methods to estimate transmission rates, I
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have corroborated the findings of this investigation, and the effect of government policy
was easier to identify. Finally, the use of time series modelling to make predictions about
key measures of spread has allowed me to suggest whether the measures in place at the
time were sufficient.

However, owing to a lack of data on recovery, recovery was defined using the range of
estimates of the infectious period and the methods used to estimate a COVID-19 death
(see Section 2.1). Furthermore, calculations for the positivity rate were only ever
approximations due to the lack of information available on the exact number of tests
conducted, which were positive, per day. Because of the possible delay between when
an individual takes a sample and the time spent testing it, there will have been an error in
the proportion of positive results to tests conducted. An unforeseen limitation was the
inability to account for the influence of new variants on the transmission of COVID-19.
Given that experts believed these variants are more transmissible, they will have
impacted how effective preventative measures were (see Section 1.1.2). Estimations and
predictions depended largely on the set up of the models used. As a result of multivariate
model estimates relating to all variables, it wasn’t possible to provide individual
confidence intervals for the fitted model of each variable. The stochastic epidemic model
(see Section 4.2) was limited in the accuracy of estimations of Rt,τ due to the choice of
time interval and serial interval distribution150. Whilst there exist methods to select the
optimum value of τ 93, this investigation did not use them due to the complexity of the
methods required. Also, the choice of serial interval distribution was highly variable
between literature sources. For the deterministic SIR model (see Section 4.1), the choice
of the interval impacted the estimations of Rt. Finally, due to the inaccuracy of detection
rates, uncoordinated data systems, and human error, the data used throughout this
investigation was unreliable. Consequently, I was limited in how confidently I could draw
conclusions.

8 Conclusion

This investigation has indicated that unclear and poorly communicated government
policies may have had a reduced impact on transmission rates and caused public
confidence to fall. Moreover, the implementation of policies may have been too late
because of outdated estimates of Rt. I have concluded that it is possible that when
correctly communicated, government policy could dramatically slow the spread of
COVID-19. Not only this, but the infrastructure created by government policy, such as
NHS Test & Trace, may make or break an approach towards managing the pandemic.
Also, the implementation of effective border control may have a drastic impact on the rate
of transmission.

There are several things that the UK Government could have changed, which may have
reduced transmission rates more effectively. First, officials could have clearly outlined
policies to the public and stated the motivations behind them. Second, the state could
have expanded testing to include close contacts of individuals who tested positive for
COVID-19 to improve methods of monitoring transmission. Third, officials could have
overhauled the tracing system to better the contact tracing to increase the effectiveness
of mass testing. Fourth, officials could have improved adherence to self-isolation policies.
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The only feasible way to have done this was by increasing motivation to comply. The
state could have provided more comprehensive financial support to those isolating. Also,
officials could have explained the benefits of self-isolation to the general public. Fifth, to
minimise the impact of having relaxed border controls, inbound travellers could have been
required to test negative for COVID-19 upon arrival. Additionally, they could have been
required to self-isolate and subsequently test negative again, regardless of their country
of origin.
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