
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

The Plymouth Student Scientist - Volume 14 - 2021 The Plymouth Student Scientist - Volume 14, No. 2 - 2021

2021

Predicting Emergency Repairs using

Classification Method

Tan, J.

Tan, J., Zhang, Q., Sia, W.Y. and Qin, Y. (2021) 'Predicting Emergency Repairs using

Classification Method', The Plymouth Student Scientist, 14(2), pp. 465-496.

http://hdl.handle.net/10026.1/18511

The Plymouth Student Scientist

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



The Plymouth Student Scientist, 2021, 14, (2), 465-496

Predicting emergency repairs using
classification methods

Jacqueline Tan, Qing Zhang, Sia Wang Ying, Yutong Qin

Project Advisor: Dr Yinghui Wei, School of Computing, Electronics, and Mathematics,
University of Plymouth, Drake Circus, Plymouth, PL4 8AA

Abstract

This paper discusses how each explanatory variable affects the possibility of having
an emergency repair to people’s home with the help of machine learning. Here, the
outcome variable is binary. The aim of this is to determine whether increasing the
frequency of routine repairs would decrease the frequency of emergency repairs, and
the predicted probability of having an emergency repair based on the variable sta-
tuses for each property. Data exploratory is first carried out to understand and simplify
the dataset obtained from a Housing Association. Statistical models such as logistic
regression, decision tree, random forest, linear discriminant analysis and k -nearest
neighbours are then used to fit the model to the dataset. We also investigate ways to
approach the missing values. The best fitted model is then determined by comparing
the highest accuracy of the predicted probabilities between these models.

Keywords: Classification methods, emergency repairs, logistic regression, random
forest, lda, decision tree, k nearest neighbours, prediction, accuracy
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Introduction

The dataset obtained from the Housing Association contains a description of proper-
ties and the frequency of each repair to the respective property. The Housing Asso-
ciation is responsible for the provision of approximately 14,200 rented social homes.
The data was accumulated as an overall total between the year 2019 and 2020. The
explanatory variables are divided into two groups, the categorical variables and the
numerical variables (Table 1). Each repairs are categorised into three groups (Table
2). Note that emergency repairs are treated as a binary variable, while planned and
routine repairs as numerical variables.

Table 1: Explanatory variables

Categorical variables Numerical variables
Postcode Mason (MA)

Date of Construction Carpenter (CAR)
Bedrooms Electric (ELE)
Tenants Electric Door (ELEDOO)

Type Gas plumber (GASPLU)
SubType Labourer (LAB)

- Painter/Decorator (PD)
- Plasterer (PLA)
- Plumber (PLU)
- Window repair (WINREP)

Table 2: The type of groups comprising of different time frames for repairs to be com-
pleted.

Group Description
Emergency repairs (24H) To be completed within 24 hours

Planned repairs (60D) To be completed within 60 working days
Routine repairs (3D, 20D) To be completed within 3 days and 20 working days

The aim of the investigation is to determine whether increasing the frequency of rou-
tine and planned repairs to people’s home would decrease the possibility of having an
emergency repair, which represents as the outcome (dichotomous) variable.

This is a case of a classification problem as we are predicting a qualitative response for
an observation. It involves assigning the observation to a category, or class. Statistical
models such as logistic regression, decision tree, random forest, linear discriminant
analysis and k -nearest neighbours are used to fit the model to the dataset to help
separate the classes. Usually, these models first predict the probability of each of the
categories of a qualitative variable, as the basis for making the classification [1]. The
best fitted model is chosen if its accuracy is the highest among the other models.
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Missing Data

There are missing values in the dataset from Date of Construction and SubType. We
approach this with mean/mode imputation which fill in the missing values with esti-
mated ones. This avoids any important information being lost. The objective is to
employ known relationships that can be identified in the valid values of the data set to
assist in estimating the missing values [2].

Exploratory Data Analysis

Data Manipulation

In order to make the data more organised and readable, we create new variables as
shown in Table 3. PD and PLA, and ELE and ELEDOO are combined since these
variables are similar in tasks.

Table 3: New Variables

Combined variables New variable
PD(Painter/Decorator) + Plasterer (PLA) Decorator (DEC)
Electric (ELE)+ Electric Door (ELEDOO) ELE (Electrician)

Routine repairs: 20 days (20D) + 3 days (3D) Routine repairs (20D)
Current year, 2021 − Date of Construction Age (Age of property)

Data Visualisation

There are four types of properties, including Flat and House, accounting to 44% (6172)
and 42% (5929) of the total properties respectively (Figure 1).

Figure 1: Total properties of each type.

Comparing with emergency and planned repairs, House has the highest number of
routine repairs among the other types of properties (Figure 2).
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Figure 2: Total repairs in each time frame for each type of properties.

The repairs done were mostly for properties in PL5, and the total number of plumbing
(PLU) and electric (ELE) repairs are the highest (Figure 3).

Figure 3: Total repairs for properties in each area.

Figure 4 shows that properties of age 60-80 years have the highest number of respon-
sive repairs. As for >80 years, there are much less responsive repairs than expected.
These properties may have been renovated, thus the need of these repairs is much
lower.
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Figure 4: Total repairs for properties of each age group.

Figure 5: Total repairs for properties of different number of rooms.

Figure 5 shows that properties with two bedrooms have the highest number of total
repairs, with more than 27,000 repairs, followed by those with one bedroom. Whereas,
properties with zero bedroom (studio) have the lowest number of total repairs.
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We also want to explore the distribution of each type of repair made within the three
time frames in the Type and Postcode of properties. Figure 6 shows that routine repairs
are highly requested in all four types of the properties and those in each of the nine
districts. There are as many emergency repairs as planned repairs in most of the type
of properties and districts.

Figure 6: Comparison between Type and Postcode of the properties.

In the stacked bar plot (Figure 7), properties with only one tenant have more demand
for repairs, mainly routine and emergency repairs.

Figure 7: Comparison between Tenant and Bedroom of the properties.
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Methods

Logistic Regression

Logistic regression models the probability of a certain class or an event existing. The
event will be whether there is an emergency repair (yes, 1) or not (no, 0). It studies
the relationship between a dichotomous dependant variable and the independent vari-
ables. The goal here is to find an equation that best predicts the probability of the
event.

Logistic Function

Linear regression is not suitable for the investigation. This is due to the mismatch in the
equation. We use logistic regression instead as it allows the probability to be mapped
onto the entire real line. The equation is as follows:

log
(

pi
1− pi

)
= α + β1x1i + · · ·+ β49x49i (1)

• pi = Pr(Yi = 1|x1i, ..., x49i) is the probability of having an emergency repair for the
i-th property, where i ∈ [1, ..., n].

• α, β1, ..., β49 are the model parameters,

• x1, ..., x16 are the number of routine and planned repairs of the 8 trades,

• categorical variables:

– x17, ..., x20 - Bedrooms: 0, 1, 3, 4. If there are 2 bedrooms, x17 = ... = x20 =
0.

– x21, ..., x24 - Age buckets: < 20, > 80, 20 − 40, 40 − 60. If the age is 60 − 80,
x21 = ... = x24 = 0.

– x25, ..., x27 - Tenants: 2, 3, 4. If there is 1 tenant, x25 = ... = x27 = 0.

– x28, ..., x30 - Types: Bungalow, House, Maisonette. If the type of property is
a flat, x28 = ... = x30 = 0.

– x31, ..., x42 - SubType: BISF, CORNISH UNIT, CROSSWALL, DORLONCO,
EASIFORM, NO FINES, ORLIT, PASSIVHAUS, PREFAB, STAR, STONECRETE,
TIMBER FRAMED. If the subtype of property is traditional, x31 = ... = x42 =
0.

– x43, ..., x49 - Postcode: PL1, PL2, PL3, PL4, PL6, PL7, PL9. If the property
is located in PL5, x43 = ... = x49 = 0.
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In (1), there are some missing categories in each categorical variables (factors). We
set the reference category to a category that accumulates the highest in that
corresponding factor. By taking the exponential of both side of (1), we obtain the
logistic function:

pi =
eα+β1x1i+...+β49x49i

1 + eα+β1x1i+...+β49x49i
(2)

We then use maximum likelihood to fit the model (2) to the dataset. This will enable
us to obtain an estimate of α and β. This idea can be defined using the likelihood
function:

ℓ(α, β1, ..., β49) =
∏
i=1

pYi
i

∏
i=1

(1− pi)
1−Yi , Yi = 1 (3)

The parameter estimates are used to maximise (3). Machine learning helps to proceed
this easily. Once we fit the model to the dataset, we can obtain the model parameter
estimates.

Linear Discriminant Analysis (LDA)

LDA involves modelling the conditional distribution of Y given the predictor X.

Concept

There are two response classes, K, 0 and 1. We want to decide which property will
most likely have an emergency repair. If we use only one predictor, p = 1 i.e. Age, it
may not separate the classes well enough as shown in Figure 8 as there is an overlap.
This is a one-dimensional case. The overlap can be minimised further if we include
more predictors, as shown in Figure 9 and Figure 10. A p-dimensional case contains
p predictors. It is harder to visualise the separation as the dimensions get bigger.

Figure 8: Distribution of the classes in a 1-D case.

LDA focuses on maximising the separability among the known classes by reducing a
p-D graph to a 2-D graph in such a way that maximises the separability of the classes.
It uses the information from both predictors to create a new axis and projects the data
onto this new axis in a way to maximise the separation, as shown in Figure 11. This is
known as the least squares method. The new axis is formed based on maximising the
distance between the means of the classes and minimising the variation within each
class resulting in well-separated classes.
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Figure 9: Distribution of the
classes in a 2-D case. The orange
dotted line separates the classes.

Figure 10: Distribution of the
classes in a 3-D case. The orange
plane separate the classes.

Figure 11: Reducing 2-D to 1-D graph by using least squares method.

Linear Discriminant Function

The linear discriminant function follows Bayes’ approach. Recall that K = 2. Let
Pr(X = x|K = k) = πk be the prior probability that a randomly chosen observation
comes from the k-th class, and fk(x) ≡ Pr(X = x|Y = k). Then Bayes’ theorem states
that:

Pr(Y = k|X = x) = pk(X) =
πkfk(x)∑K
l=1 πlfl(k)

(4)

Here pk(x) is the posterior probability that X = x comes from the k-th class conditional
on the predictor value. LDA estimates fk(x) to create a classifier that approximates
the Bayes’ classifier.
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For p = 1:
Assume that fk(x) follows a normal distribution, and σ2

1 = ... = σ2
K so we can simplify

them to just be σ2. µk and σ2
k denotes the mean and variance parameters for the k-th

class. LDA will approximate the Bayes classifier and classifies to the class for which
δ̂k(x) is largest by substituting estimates of πk, µk and σ2 into:

δk(x) = x
µk

σ2
− µ2

k

2σ2
+ log(πk), (5)

where the Bayes’ decision boundary corresponds to the point,

x =
µ2
1 − µ2

2

2(µ1 − µ2)
=

µ1 + µ2

2
, (6)

to obtain the following linear decision boundary:

δ̂k(x) = x
µ̂k

σ̂2
− µ̂2

k

2σ̂2
+ log(π̂k) (7)

The estimates are calculated as follows:

µ̂k =
1

nk

∑
i:yi=k

xi, (8)

σ̂2 =
1

n−K

K=1∑
k=1

∑
i:yi=k

(xi − µ̂k)
2. (9)

π̂k =
nk

n
(10)

where n is the total number of training observations and nk is that in the k-th class.
Note that σ2 is the weighted average of the sample variances for each of the K classes.
To implement LDA, we begin by estimating πk, µk and σ2. We then compute the deci-
sion boundary, that results from assigning an observation to the class for which (7) is
largest [1].

For p > 1:
We assume that X = (X1, ..., Xp), and each predictor follows a one-dimensional nor-
mal distribution. The discriminant function is simply the vector/matrix version of (7):

δk(x) =
xTµk∑∑∑ − µT

k µk

2
∑∑∑ + log(πk) (11)

Here, µk is a class-specific mean vector,
∑∑∑

is a covariance matrix that is similar to all
K classes and πk is the prior probability that an observation belongs to the k-th class
[1]. We will need to estimate µ1, ..., µK , π1, ..., πK and

∑∑∑
by using formulas similar to (8)

and (9). Again, LDA substitutes these estimates into (11) and classifies to the class
for which δ̂k(x) is largest.
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k -Nearest Neighbours

The k -nearest neighbours (k -NN) is a non-parametric algorithm used for classification.
The model is distributed from the distance of data, which means it is a supervised
classification based on the train dataset. By using this approach, properties can be
separated into several classes to predict the probability of emergency repairs of a new
sample.

Concept

Figure 12: Example of k -NN.

Figure 12 shows how k -NN works. The value of k is the number of the nearest neigh-
bours of the new samples. The central A (blue) is the sample which should be classi-
fied to other types, either class B (green) or class C (purple). If k = 3, according to the
distances between A and other variables, the test sample A should be classified into
class C, as the smallest circle has two purple circles and one green squares (2>1). If
k = 7, according to the distances between A and other variables, the test sample A
should be classified into class C, as the outer circle has four purple circles and three
green squares (4>3).

In order to avoid the over-fitting problem, the value of k should be selected through
cross-validation. We assume that the predictor X = (X1, ..., Xp). The distance is
measured by distance metrics:

d(X1, X2) = (
n∑

i=1

|X1i −X2i|p)
1
p , n is the dimensionality of the space. (12)

When p = 1, we obtain the Manhattan distance. When p = 2, we obtain the Euclidean
distance.
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Decision Tree

The classification tree is constructed with the binary decision structure. This means
that the root and all subsequent branches can grow only two new nodes. The goal
of the classification tree is to make an optimal selection of whether a property has an
emergency repair.

Concept

Figure 13: Significant terms in the classification tree.

Each node in the tree represents an attribute test (Figure 13). The decision process
starts at the root node and follows the branch until it reaches the leaf node. This pro-
cess is repeated until all instances in a node are in the same class, or further splitting
fails to improve the prediction.

The first node in the tree, which represents the entire population or sample, is fur-
ther split into two or more homogeneous sets. A branch represents a test outcome
(either yes or no) and connects to the next node or leaf. When a sub-node splits into
further child nodes, it is called the decision node. The process of deleting the child
nodes of the decision node is called pruning. At the end of the tree are the leaf nodes
(external nodes), which represent the predicted results.

When a node splits 40/60, it is 100% impure, and when all the data belongs to a single
class, it is 100% pure. Methods of entropy or Gini index is used to evaluate the quality
of classification tree splitting and determine that it will produce the best outcome. The
entropy calculation formula is as follows: [1]

E(X) = −
k∑

i=k

p̂mk log(p̂mk) (13)
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where p̂mk represents the proportion of training observations from the k-th class in the
m-th region. K represents either ”1 (Yes)” or ”0 (No)”. The higher the entropy repre-
sents a more rare outcome from the information [5].

The Gini index formula is given by:

G =
K∑
k=1

p̂mk(1− p̂mk) (14)

When a region m contains most of the data from a single class K, the Gini Index value
will be small [1]. The higher the Gini index, the higher the degree of inequality and
the greater the heterogeneity.

Figure 14: Comparing the effectiveness method for nodes impurity.

Figure 14 shows that the Classification Error Rate is insensitive to the growth of the
tree. In practical application, the other two methods are preferable.

E = 1−maxk(p̂mk) (15)

The classification tree tends to over-fit because at each node, it makes a decision in
a subset of all the features, and when it reaches the final decision, it is a complex
decision chain. Pruning is a method to avoid classification tree over-fitting [10].

Random Forest

Random Forest is rather a bootstrap aggregation method used in model prediction. It
applies the method of bagging to measure the relative importance of each variable on
the prediction. The aim is to predict the value of the responsive feature and whether
there is an emergency repair.

Concept

Random forest uses the bootstrap method to create multiple bootstrap datasets, as
shown in Figure 15. Bootstrapping is a statistical process of re-sampling a training set
where 100% of the observed data was replaced with samples. This model randomly
selects a predefined number of features as candidates to create n classification trees
with different bootstrapped data sets. Bootstrapping ensures that each classification
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Figure 15: How the model works

tree in the random forest is unique, which reduces the population variance of the ran-
dom forest classifiers.

The random forest classifier aggregates the decisions of individual trees and makes
the final decision by majority vote. The prediction for a classification problem is:
f(x) = majority vote of all predicted classes over n classification trees

Any sample that is not selected for the bootstrap dataset (approximately 1/3 of the
training dataset) is placed in a separate data-set, called the Out-of-Bag dataset [12].
This dataset is used for calculating the importance of a specific variable and estimate
the random forest’s goodness-of-fit.

Results

Logistic Regression

Interpretation of the Result

After fitting the model to the dataset, we perform backward elimination to remove in-
significant numerical variables to p and likelihood ratio test to determine which cate-
gorical variable is not needed, the result obtained is shown in Table 4 and Table 5.

Numerical variables:
Recall that Yi indicates of having an emergency repair. In Table 4, α̂ is the log
odds of Yi given that all other variables are 0. However, this would not make sense
realistically as this is an example of extrapolation. β̂i is the change in log-odds of Yi

for every one repair increase in xi, given that the status of other variables are fixed.
Similarly, it also represents the log odds ratio of Yi between the number of two sets of
repairs made within a time period. Take β̂1 for instance, 0.241 represents the log odds
ratio of Yi between (k + 1) and k carpenter repairs made within 20 days (CAR20D),
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Table 4: Results for the numerical variables obtained from the logistic regression
model.

Numerical variable Parameter estimate 95% confidence interval
- α̂ = -0.00334 (-0.111, 0.127)

CAR20D, x1 β̂1 = 0.241 (0.184, 0.300)
CAR60D, x2 β̂2 = 0.194 (0.0997, 0.290)
ELE20D, x3 β̂3 = 0.201 (0.160, 0.243)
ELE60D,x4 β̂4 = 0.199 (0.144, 0.256)

GASPLU20D, x5 β̂9 = -0.263 (0.0213, 0.194)
MA20D, x9 β̂10 = 0.107 (0.0404, 0.218)
MA60D, x10 β̂11 = 0.129 (0.0555, 0.309)

DEC20D, x11 β̂13 = 0.181 (0.212, 0.286)
PLU20D, x13 β̂14 = 0.248 (0.147, 0.418)
PLU60D, x14 β̂13 = 0.280 (0.212, 0.286)

WINREP20D, x15 β̂14 = 0.156 (0.147, 0.418)
WINREP60D, x16 β̂14 = 0.194 (0.147, 0.418)

where k = 1, .... The odds ratio will simply be exp(0.241)=1.27.

β̂5 is negative. This indicates that if we increase the number of gas plumbing re-
pairs within 20 days (GASPLU20D), pi will decrease given that the other variables are
at a fixed status. As for the positive parameter estimates, i.e. β̂16, increasing the
number of window repairs within 60 days (WINREP60D) will increase pi given that
other variables are at a fixed status.

The 95% confidence interval does not contain 0, indicating that we can rule out the
possibility that these parameters are 0. It also shows that the fitted model contain the
necessary numerical variables that are statistically significant.

Categorical variables:
The estimates shown in Table 5 is the log odds ratio of Yi between a category in its fac-
tor and its reference category, given that other variables are fixed. Therefore, the log
odds ratio of Yi between three and two bedrooms is 0.0647. The corresponding odds
ratio is then exp(0.0647)=1.07. Here, it seems that the odds that properties with three
bedrooms are 1.07 times more likely to have an emergency repair than those with
two bedrooms. As for those with one bedroom, the odds ratio is exp(-0.133)=0.875.
To interpret this value in an easier way, we invert it. So the odds ratio of having an
emergency repair for properties with two bedrooms is 1/0.875=1.14 times more that
those with one bedroom. A summary of the log odds ratio for the rest of the categorical
variables can be seen in Table 5.

Some of the 95% confidence interval in Table 5 does not contain 0. This just indicates
that we can rule out the possibility that the log odds ratio of having an emergency
repair are significantly different than 0. We cannot rule out such possibility otherwise.
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Table 5: Results for the categorical variables obtained from the logistic regression
model. There are two confidence intervals containing no upper bound. This simply
means that the interval is wider and may lack precision due to high dispersion within
the corresponding variable’s data.

Categorical variable Parameter estimate 95% confidence interval
Bedrooms: 0, x17 β̂17 = -0.333 (-0.627, -0.0363)

1, x18 β̂18 = -0.133 (-0.247, -0.0189)
3, x19 β̂19 = 0.0647 (-0.0428, 0.172)
4, x20 β̂20 = 0.309 (0.0332, 0.590)

Age: < 20, x21 β̂21 = 0.0352 (-0.114, 0.184)
> 80, x22 β̂22 = 0.329 (-0.0906, 0.766)
20-40, x23 β̂23 = 0.0802 (-0.0642, 0.225)
40-60, x24 β̂24 = 0.166 (0.0487, 0.284)

Tenants: 2, x25 β̂25 = 0.191 (0.0466, 0.337)
3, x26 β̂26 = 0.649 (0.231, 1.09)
4, x27 β̂27 = 11.0 (-6.39, NA)

Type: Bungalow, x28 β̂28 = 0.534 (0.379, 0.690)
House, x29 β̂29 = -0.369 (-0.486, -0.252)

Maisonette, x30 β̂30 = 0.105 (-0.139, 0.354)
SubType: BISF, x31 β̂31 = 0.131 (-0.132, 0.398)
CORNISH UNIT, x32 β̂32 = -0.0662 (-0.209, 0.0770)
CROSSWALL, x33 β̂33 = -0.0765 (-0.366, 0.217)
DORLONCO, x34 β̂34 = 0.605 (-1.78, 3.69)
EASIFORM, x35 β̂35 = 0.0795 (-0.0665, 0.226)
NO FINES, x36 β̂36 = 0.00624 (-0.165, 0.179)

ORLIT, x37 β̂37 = 0.178 (-0.356, 0.738)
PASSIVHAUS, x38 β̂38 = -0.656 (-1.26, -0.0576)

PREFAB, x39 β̂39 = 11.3 (-54.9, NA)
STAR, x40 β̂40 = 0.312 (0.0463, 0.585)

STONECRETE, x41 β̂41 = -2.11 (-5.20, -0.124)
TIMBERFRAMED, x42 β̂42 = -0.309 (-0.517, -0.0995)

Logistic Function

By substituting the parameter estimates into (2), we obtain the following:

p̂i =
e−0.00334+0.241x1i+...−0.309x42i

1 + e−0.00334+0.241x1i+...−0.309x42i

x43i, ..., x49i is not in the equation anymore as the variable Postcode was proven not
needed in the model. We can then calculate pi i.e. the probability of having an emer-
gency repair given that five carpenter repairs has been completed within 20 days and
that the property is of two bedrooms, aged 20-40, has one tenant and is a traditional
flat is:
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p̂i =
e−0.00334+0.241(5)+0.0802(1)

1 + e−0.00334+0.241(5)+0.0802(1)
= 0.783

We also want to determine how well did the logistic regression model predict the prob-
ability and overcome this classification problem.

Predicted Accuracy

Table 6: Confusion matrix based on the training set.
TN: True negative; FN: False negative; FP: False positive; TP: True positive

Predicted/Actual classes 0 1
0 TN=259 FN=194
1 FP=695 TP=1,669

Now, we fit the model to the training set (80% of the dataset). In table 6, we see
that the model correctly predicted that 1,669 properties will have an emergency repair,
and that 259 properties will not have an emergency repair. Therefore, the predicted
accuracy is (1, 669 + 259)/(1, 669 + 259 + 695 + 194)× 100 = 68.4%

We can confirm this accuracy by looking at the receiver operating characteristics
(ROC) curve in Figure 16. AOC is the area under the curve (blue region). The greater
the area, the higher the accuracy. Specificity and sensitivity represents the true nega-
tive rate and true positive rate respectively:

Sensitivity = True positive rate =
TP

Actual yes (1)

Specificity = True negative rate =
TN

Actual no (0)

A perfect ROC curve approaches closely to the top left corner, indicating a high true
positive rate and a low false positive rate. The dotted line represents the ”no informa-
tion” classifier. We can see that the area under the curve equates to 0.688 which is
decent.
Figure 17 shows a plot of the predicted probabilities based on the training set along
with the rank of each sample, from low to high probability. Most of the properties that
has an emergency repair are predicted to have a high probability of Yi, and those with
no emergency repair are predicted to have a low probability of Yi. The graph also
shows an (almost) S-curve.
We can also extract the highest and lowest probability of Yi and its index to determine
the property associated to it. This model predicts that properties located in PL2 3JH
and PL1 5JT obtains the highest probability of having an emergency repair, while PL2
2PN and PL1 4HL obtains the lowest probability.
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Figure 16: ROC curve for the logistic regression model on the training set.

Figure 17: A plot showing the predicted probabilities that each property has an emer-
gency repair along with the other variable statuses.

Linear Discriminant Analysis (LDA)

Interpretation of the Result

Based on Table 7, we see that π̂1 = 0.346 and π̂2 = 0.654. Specifically, 34.6% of the
training observations correspond to properties to which there is no emergency repair.

Table 7: The estimated prior probabilities, π̂1 and π̂2 within each class.

Prior probabilities of groups:
Group 0 1

Prior probability 0.346 0.654
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The average shown in Table 9 could suggest that i.e. the number of window repairs,
x16, have a slightly greater influence on having an emergency repair than on not having
one.

The values in Table 10 contributes to the linear discriminant function, which is 0.269×
x1 + 0.183 × x2 + ... − 0.479 × x42. If it is large, the property will have an emergency
repair and if it is small, it will predict otherwise.

Predicted Accuracy

Figure 18: Plots of the linear discriminants obtained by computing the linear discrimi-
nant function for each of the training observations. Top: Class 0; Bottom: Class 1.

In Figure 18, we see that the classes are not well-separated as they overlap. Again,
we check the performance of the model by observing the confusion matrix in Table 8.

The model correctly predicted that 1,753 properties will have an emergency repair,
and that 159 properties will not have an emergency repair. Therefore, the predicted
accuracy is (1, 753+159)/(1, 753+159+795+110)×100 = 67.9%. LDA underperforms
compared to the logistic regression model. The accuracy of the predicted proba-
bility can be checked by plotting the ROC curve, as seen in Figure 19. The area under
the curve is 0.684, which is slightly less than that obtained for the logistic regression
model.

Table 8: Confusion matrix based on the training set.

Predicted/Actual classes 0 1
0 TN=159 FN=110
1 FP=795 TP=1753
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Table 9: The estimated average of each predictor within each class.

Group means:
Predictor Class: 0 1

CAR20D, x1 0.266 0.558
CAR60D, x2 0.102 0.218
ELE20D, x3 0.544 0.953
ELE60D, x4 0.277 0.520

GASPLU20D, x5 0.121 0.144
MA20D, x9 0.133 0.229
MA60D, x10 0.116 0.199

DEC20D, x11 0.0598 0.134
PLU20D, x13 0.636 1.20
PLU60D, x14 0.0487 0.126

WINREP20D, x15 0.283 0.481
WINREO60D, x16 0.0408 0.0640
Bedrooms: 0, x17 0.0190 0.0157

1, x18 0.284 0.315
3, x19 0.310 0.286
4, x20 0.0185 0.0221

Age: < 20, x21 0.113 0.0923
> 80, x22 0.00718 0.00868
20-40, x23 0.107 0.115
40-60, x24 0.339 0.377

Tenants: 2, x25 0.118 0.164
3, x26 0.00692 0.0167
4, x27 0.00 0.000407

Type: Bungalow, x28 0.0692 0.129
House, x29 0.471 0.392

Maisonette, x30 0.0254 0.0377
SubType: BISF, x31 0.0223 0.0240
CORNISH UNIT, x32 0.121 0.101
CROSSWALL, x33 0.0195 0.0149
DORLONCO, x34 0.00 0.000271
EASIFORM, x35 0.105 0.107
NO FINES, x36 0.0531 0.0668

ORLIT, x37 0.00462 0.00475
PASSIVHAUS, x38 0.00462 0.00258

PREFAB, x39 0.00 0.000136
STAR, x40 0.0205 0.0294

STONECRETE, x41 0.00103 0.00
TIMBERFRAMED, x42 0.0382 0.0419
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Table 10: The coefficients of linear discriminants used to form the LDA decision rule.

Predictor Coefficients of linear discriminants
CAR20D, x1 0.269
CAR60D, x2 0.183
ELE20D, x3 0.241
ELE60D, x4 0.192

GASPLU20D, x5 -0.383
MA20D, x9 0.139
MA60D, x10 0.183

DEC20D, x11 0.178
PLU20D, x13 0.309
PLU60D, x14 0.325

WINREP20D, x15 0.162
WINREP60D, x16 0.280
Bedrooms: 0, x17 -0.350

1, x18 -0.194
3, x19 0.132
4, x20 0.598

Age: < 20, x21 0.0188
> 80, x22 0.470
20-40, x23 0.223
40-60, x24 0.322

Tenants: 2, x25 0.299
3, x26 0.854
4, x27 1.42

Type: Bungalow, x28 0.721
House, x29 -0.584

Maisonette, x30 0.112
SubType: BISF, x31 0.479
CORNISH UNIT, x32 -0.0988
CROSSWALL, x33 -0.295
DORLONCO, x34 3.17
EASIFORM, x35 0.256
NO FINES, x36 0.0365

ORLIT, x37 0.434
PASSIVHAUS, x38 -0.563

PREFAB, x39 1.84
STAR, x40 0.579

STONECRETE, x41 -3.52
TIMBERFRAMED, x42 -0.479
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Figure 19: ROC curve for the LDA classifier on the training set.

Again, we can extract the highest and lowest predicted probability of a having an emer-
gency repair. Properties in PL2 2PN and PL1 4HL obtains the highest probability while
PL3 6SW and PL1 5HW obtains the lowest probability. There is a difference in these
probabilities where the highest probability here is instead the lowest probability pre-
dicted by the logistic regression model.

k -Nearest Neighbours (k -NN)

Interpretation of Result

Since the k -NN algorithm needs to calculate the distance between different samples,
the data types of variables are all needed to change into numeric. Different variables
have different scales, which means the range and unit of variables should be nor-
malised in order to simplify the calculation. We use min-max normalisation to uniform
the range of values, which formulates to:

Xnew =
X −min(X)

max(X)−min(X)
(16)

where Xnew ∈ [0, 1].
For the binomial variables, like y, we keep the values of it. For the categorical vari-
ables which has more than two classes (discrete variables), if the variables work with
ordered-factors, we covert them into normal factors.
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Figure 20: Plot of RMSE of the Cross-Validation

RMSE is used to select the optimal model using the smallest value (Figure 20). The
final value used for the model is k = 13.
The k -NN algorithm can provide a rough classification of samples. The disadvantage
of this algorithm is that it cannot have the ranking of variables about the importance.
That is to say, k -NN only can predict the data, but not determine which variables have
more effects on the results. In general, we use random forest as an additional method
because it can provide more detailed information about the variables.

Predicted Accuracy

Table 11: Confusion matrix based on the training set.

Predicted/Actual classes 0 1
0 TN=176 FN=853
1 FP=205 TP=1703

This model correctly predicted that 1,703 properties will have an emergency repair,
and that 176 properties will not have an emergency repair. Thus, the accuracy for
k -NN is (1, 703 + 176)/(1, 703 + 176 + 205 + 853)× 100 = 64.1%.

Decision Tree

We separate the dataset into 80% training set and 20% testing set. We use the follow-
ing features to build the classification tree:

• Numerical variables:

– x1, ..., x16 are the number of routine and planned repairs of each of the 8
trades.

• Categorical variables:
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– Bedrooms: 0, 1, 3, 4

– Age buckets: < 20, > 80, 20− 40, 40− 60

– Tenants: 2, 3, 4

– Types: Bungalow, House, Maisonette

– SubType: BISF, CORNISH UNIT, CROSSWALL, DORLONCO, EASIFORM,
NO FINES, ORLIT, PASSIVHAUS, PREFAB, STAR, STONECRETE, TIM-
BER FRAMED

– Postcode: PL1, PL2, PL3, PL4, PL6, PL7, PL9.

We set the reference category to a category that accumulates the highest in that cor-
responding factor.

Fit Process

We use 10-fold cross-validation to find out how the error in the tree varies with the size
of the tree.

Figure 21: 10-fold Cross-Validation

Table 12: Complexity Table:
Number of split (nsplit); 10-fold Cross-Validated Error Rate (xerror); Standard Error
(xstd)

Complexity parameters nsplit relative error xerror xstd
0.011 0 1.00 1.0000 0.012994
0.010 4 0.94 0.97166 0.012904

10-fold cross-validation creates 10 random subsets of the training data, using one
portion of them as a test set. It builds a classification tree for the remaining nine parts
and evaluates the tree using the test portion.

488



The Plymouth Student Scientist, 2021, 14, (2), 465-496

The tree that produces the lowest cross-validation error rate (xerror) is selected as the
tree that most fits the data [16]. In this case, this minimal 10-fold cross-validated error
rate is 0.97166 (Table 12), and the tree has four splits.
As shown in Table 12, there is a relatively small error at a complexity parameter (cp)
of 0.01, indicating that the optimal pruning occurs when the tree has four splits (Figure
21).

Interpretation of the Result

Figure 22 demonstrates the pruned classification tree used to classify emergency re-
pairs as Yes (1) or No (0) based on the ”features” of the property, such as Type (House),
x13 (PLU20D), x3 (ELE20D) and x15 (WINREP20D).

Figure 22: Pruned Classification Tree

The overall probability of whether properties have an emergency repair is at the root
node. It shows that the proportion of properties that do not have an emergency repair
is 66% (Figure 22). This node asks whether x13 is less than one. If so, we look at the
root’s left child node; otherwise, on the root’s right child node.

To the root’s right child node, 53% of the properties have x13 > 1. At the x13 > 1
node, the probability of properties with no emergency repair is 74%. So, the overall
terminal node of this bucket ends with not having an emergency repair.

To the root’s left child node, 47% of the properties have the feature x13 < 1. At this
node, the probability of properties with no emergency repair is 56%. The node splits
again between whether x3 is less than one. If so, we move downwards towards the
left; otherwise, towards the right.

The interpretation seems like, ”If a property has the features (x13 < 1), (x3 < 1),
(x15 < 1) and (Type: House), then (y = 0)”. It means that properties having these
kinds of features would not have an emergency repair. We can continue to learn which
features affect the likelihood of emergency repair.
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Predicted Accuracy

As shown in table 13, this model correctly predicted that 1,722 properties will have an
emergency repair, and that 166 properties will not have an emergency repair. Thus,
the accuracy of the pruned tree is (1, 722+166)/(1, 772+166+805+125)×100 = 67.0%.

Table 13: Confusion matrix based on the training set.

Predicted/Actual classes 0 1
0 TN=166 FN=805
1 FP=125 TP=1722

So far, the accuracy of the decision tree is the lowest and the logistic regression model
is the highest among the four models discussed.

Random Forest

Fit Process

We separate the dataset into 80% training set and 20% testing set. The features that
we use to build the random forest are those used for the decision tree. Again, we set
the reference category to a category that accumulates the highest in that correspond-
ing factor.
We tune hyper-parameters to reduce the error rate in the model including mtry (number
of variables randomly sampled as candidates at each split) and nth trees (number of
trees to grow).

Figure 23: nth Trees

Figure 23 shows that the OOB error rate initially drops and becomes constant. It shows
that after about 300 trees, the model could not improve the error. Hence, we use 300
trees to train the model.
The number of variables tried at each split, mtry [1] in this result is 4.

mtry =
√
p =

√
23 = 4.795 (17)
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where p is the number of the features. The training set has 23 features, indicating that
the model is based on 4 mtry (

√
23 ≈ 4 or 5).

Figure 24: mtry Figure 25: 10-fold cross-validation

Figure 24 clearly shows that the OOB error rate is minimal when mtry is 2. The OOB
error rate continues to rise, reaching a peak at mtry of 8. When mtry = 2 is selected,
the OOB error rate decreases from 33.07% to 31.78%.
We also apply the 10-fold cross-validation method to evaluate the model performance
(Figure 25). Similarly, mtry of 2 has the highest accuracy.

According to Figure 26, Mean Decrease Accuracy contains a measure of the extent
to which the variable improves the accuracy of the forest in predicting the classifica-
tion [8]. Higher values indicate that the corresponding variable improves the prediction.

Mean Decrease Gini measure of variable importance based on the Gini impurity in-
dex (14) [7]. The features are in agreement with the results of the permutation-based
variable importance and the Gini importance. The higher the value of the mean de-
crease, the higher the significant of the variables in the model.

Also, x13 (PLU20D) is the most important variable when classifying the data. By looking
at the feature importance, we decide that dropping x6 (GASPLU60D) and x16 (WIN-
REP60D) is possible as they do not contribute enough to the prediction process.

Figure 27 shows the model after applying 10-fold cross-validation. Similarly, it shows
that x13 is the most important variable where SubtypePREFAB is the least important
variable.

Figure 28 and Figure 29 shows the marginal effect of x13 (PLU20D) on class probability.
When x13 < 2 it tends to predict class 0 more strongly than when x13 > 2.
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Figure 26: Variable Importance

Predicted Accuracy

Figure 30 plots the distribution probability of the prediction class, which is used to
determine whether the model is able to distinguish correctly classified and wrongly
classified samples according to the quality of classification. In the case of value 0,
there are not only correctly classified samples but also wrongly classified samples. At
the same time, there are also correctly classified and wrongly classified samples in the
case of value 1.
Figure 31 plots the distribution of votes for each sample in each class. In the case of
value 0, the random forest model wrongly classifies most samples with the value of 0
into the category with the value of 1. But in the case of value 1, the model correctly
classifies most cases.
Based on Table 14, this model correctly predicted that 1,713 properties will have an
emergency repair, and that 237 properties will not have an emergency repair. Thus, the
accuracy from the random forest is (1, 713+237)/(1, 713+237+734+134)×100 = 69.2%.

Table 14: Confusion matrix based on the training set of random forest.

Predicted/Actual classes 0 1
0 TN=237 FN=734
1 FP=134 TP=1713
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Figure 27: Variable Importance

Figure 28: Partial Dependence on x13

Class 0.
Figure 29: Partial Dependence on x13

Class 1.

By performing 10-fold cross-validation, an accuracy of 66.9% is obtained for the ran-
dom forest model. We see that the accuracy of the random forest model is the highest,
and the lowest for the decision tree model among the five models discussed.

Discussion

Logistic regression model does a slightly better job than LDA. LDA assumes that each
independent variable is normally distributed but this may not be the case. There are
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Figure 30: Plot histogram of assignment probabilities to predicted class

Figure 31: Votes for Random forest

categorical variables that go against this assumption as LDA also assumes that they
are continuous. This causes the linear discriminant model to be less stable than the
logistic regression model. Furthermore, LDA is more sensitive to outliers. Logistic
regression does not need to meet any requirements, making it a flexible and robust
model to deal with. If all requirements are met for LDA, then there is a chance that
it may classify better. Also, LDA is popular when we have more than two response
classes [1].

The k -NN algorithm can be used to roughly classify, and there should be no missing
values in processing the model. Based on this point, the sample of k -NN is differ-
ent from other models we used for this investigation. The data should be normalised
and the calculation of this algorithm needs less time, which are the advantages of this
method. In order to have detailed classification and the ranking of the importance of
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variables, random forest is used for further model fitting.

The disadvantage of the classification tree is that it is easy to over-fit, which leads
to inaccurate prediction results. We want to minimize the error due to data bias and
the error due to the variance. Random forests limit over-fitting and errors due to bias
by combining classification trees and aggregating those results into a final result [14].
According to the results, the accuracy of the classification tree is 67% and the random
forest is 69.2%. This shows that the random forest is better than the single classifica-
tion tree to grasp the features of the data from the whole and get higher accuracy.

Conclusion

All the models obtained approximately equal accuracy on the predicted probabilities.
This may be due to the quality of the dataset. The accuracy could be improved if we
had more data to work with. But, higher accuracy does not always indicate a better
performance. Sometimes, the improvement in model’s accuracy can be due to over-
fitting too [15]. Therefore, the models discussed may have performed decently but with
its own advantages and disadvantages.
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