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Abstract     
Demands for food resources are increasing with the growing human population and the 
impacts of climate change on agricultural land. Protein is an essential macronutrient for 
human well-being and supplies are likely to face a global security crisis in the foreseeable 
future. However, research has shown that the brown seaweed species Saccharina latissima 
(S. latissima) could be an alternative plant-based source of protein for human consumption 
that can be sustainably farmed under North Sea conditions. Yet seaweed farming currently 
remains an underexploited resource in the United Kingdom (UK). This study aims to identify 
areas suitable for S. latissima cultivation in the exclusive economic zone of England’s North 
Sea, to help decision-makers adapt to challenges in finding sustainable ways to feed the 
population. A multi-criteria decision analysis was used to identify twenty planning, technical 
and environmental constraint variables and their criteria for developing an S. latissima 
aquaculture site. The integrated methodical approach then used a geographical information 
system to perform a Boolean modelling technique that spatially mapped out constraints 
across the study area to create a suitability map. Results identify and illustrate the 
whereabouts of ∼2.05 million hectares (∼20,500km2) in the English North Sea that have the 

capacity for S. latissima cultivation. Findings conclude there is enough scope within the 
established Boolean areas for S. latissima yields to make meaningful contributions towards 
the UK’s protein supply. However, analysis indicated that S. latissima should be regarded as 
a high-quality food source rather than being viewed solely for potential protein content. It is 
recommended that future work investigates the Boolean areas in further detail by adding a 
weighted suitability overlay to identify between suitable and optimal areas for S. latissima 
aquaculture, which will strengthen site selection decision-making.                                                       
 
Keywords: Aquaculture, Boolean, cultivation, GIS, macroalgae, MCDA, North Sea, plant-
based protein, Saccharina Latissima, seaweed, site selection, sugar kelp, sustainability, UK.       
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Introduction   

Project rationale: Global food security challenges   

Agricultural land, climate change and resource demands  
A staggering 50% of Earth’s habitable land is used to produce food for human 
consumption (Roser et al., 2019). These agricultural practices are contributing 
towards the acceleration of climate change (Carter et al., 2017). Meanwhile, climate 
change is diminishing the yields from agricultural practices (Malhi et al., 2021). This 
relationship is subsidising a network of positive feedback loops that are pushing 
climate change towards a threshold whereby any human intervention to reverse 
consequences will be trivial (IPCC, 2021).         
 
The increased magnitude and frequency of extreme weather events have 
conspicuously changed previously stable seasonal cycles and decreased the fertility 
of agricultural land or destroyed it completely (Qiu et al., 2022; Cogato et al., 2019). 
This is challenging farmers to plan harvests and produce high yields impacting food 
security and socio-economics on a global scale (Mbow et al., 2019). The 
deterioration of agricultural productivity is also being amplified by increasing 
occurrences of saltwater inundation in coastal regions, due to flooding caused by 
sea level rise (Lindsey, 2022; Duarte et al., 2020; Spencer et al., 2015) which is 
reducing the quality of agricultural soil (DEFRA, 2022).        
 
Since 2005 the global population has been rising by approximately 83 million people 
per year and the United Nations (2019) anticipates figures to reach 8.6 billion by 
2030, and 9.8 billion by 2050. In addition, long-term trends show growth in the global 
gross domestic product (FAO, 2021) which correlates to a growing consumption of 
resources (Alper, 2018). Including the global per capita daily energy and protein 
intake (Roser et al., 2019) (figure 1), which is further increasing the pressure on food 
supplies to meet their demand. This is concerning as the world will need 60% more 
food by 2050 assuming there is no reduction to the current amount of food waste 
(FAO, 2012).                 

Bottom-up consumer food demands   
Debating which food source is a better or worse burden on the environment is 
subject to conscious and subconscious bias and can be assessed from many 
different perspectives (Murphy, 2020). However, as the landmass available for 
agriculture is shrinking and becoming increasingly unreliable, a workable solution 
could be to sustainably utilise the ocean’s resources to produce an alternative 
source of protein (Cicin-Sain, 2015). Moreover, it is agreed that primary productivity 
supports the metabolic requirements of every species above in the food chain and 
that 90% of energy is lost when transferred to the next trophic level (only 10% is 
converted into biomass) (Eddy et al., 2021). Therefore, transfer inefficiency problems 
arise. However, if people replaced the consumption of higher trophic levels with 
primary producers’ energy could be conserved (Eddy et al., 2021).  
Recent decades have brought demands that would support this transition towards 
protein alternatives to dairy, meat, and fish, as shown in figure 1 which illustrates a 
growing consumption of plant-based protein in the UK.                                
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For instance, the number of vegans living in the UK was ∼600,000 in 2019 which 
was a 300% increase from 2014 (Howard, 2021). Additionally, 14% of UK adults 
currently follow a meat-free diet and the number of omnivores eating meat-free 
meals is also increasing (Nilsson, 2019). Protein extraction using an environmentally 
sustainable yet feasible method that complies with a plant-based diet is required to 
feed this request. Yet challenges arise as although for multiple reasons including 
poor dietary choice anyone can develop malnourishment, people who consume 
plant-based diets are more susceptible to regularly lacking in essential amino acids 
(Kiely et al., 2021) and micronutrients, including iodine (Fallon et al., 2020; Groufh-
Jacobsen et al., 2020) and vitamin B-12 (Kapoor et al., 2017). Furthermore, vegans 
may ingest higher volumes of pesticides when compared to non-vegans (Van et al., 
2009).                    
 
However, macroalgae can contain an abundance of micronutrients and proteins 
(Patarra et al., 2011) and its cultivation alleviates many terrestrial-based farming 
issues as it does not require fresh water, fertiliser or rely on arable land that could be 
diminished by intense precipitation and droughts (Stanley et al., 2019). It may also 
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Figure 1: Daily per capita protein supply, measured in grams per person per day. This 
figure illustrates time series data of the origin (animal or plant) of the UK’s per capita 

protein supply, along with the total (animal and plant combined) daily protein supply for 
the UK and world. Animal protein includes protein from all meat commodities, eggs, 

dairy products, fish, and seafood. Data was acquired from the FAO (2018). 
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not require pesticides; however, farm infrastructure could still utilise a form of 
antifouling (Zheng et al., 2019).                   

Theoretical background to macroalgae cultivation          

Macroalgae        
Seaweeds are benthic multicellular algae taxonomically classified based on their 
photosynthetic pigment combinations (Pereira, 2016). They are usually restricted to 
relatively shallow coastal waters as they must receive adequate sunlight to 
photosynthesise whilst simultaneously anchoring their holdfasts (a root-like structure) 
to a substrate (Yesson et al., 2015).  Brown seaweeds can inhabit the subtidal zone 
as they contain dominant ancestry photosynthetic carotenoid pigments such as, 
xanthophyll (yellow pigment) and fucoxanthin (brown pigment, responsible for their 
brown characteristics), which enables them to absorb light in parts of the spectrum 
where chlorophyll is less efficient (O’Sullivan, 2010). This wide absorption range 
allows brown seaweed to grow at greater depths than green (Pereira, 2016). 

Saccharina latissima   
The demand for seaweed-derived products in Europe is increasing (Kim et al., 
2017). However, harvesting seaweed is not an environmentally feasible method to 
meet the growing demands as wild seaweed stocks may become overexploited 
(Callaway, 2015). Though, seaweed aquaculture would alleviate this risk whilst 
yielding ecosystem services and socio-economic benefits (Buck and Grote, 2018).    
 
Kelp (phylum Ochrophyta, order Laminariales) is a category of brown seaweed 
which is a dominant type of macroalgae in aquaculture, and Saccharina latissima (S. 
latissima) also known as Sugar Kelp, is a brown kelp species commonly spread 
throughout Europe (Portugal to Norway) (Stanley et al., 2019). It is also the most 
cultured European seaweed species because it has a rapid biomass growth rate 
(Bak et al., 2018; Handä et al., 2013), and commercially important tissue content for 
food applications (Stévant et al., 2017; Marinho et al., 2015). Such as, the structural 
carbohydrate alginic acid (a complex polysaccharide used as a stabilizer and 
emulsifier) (Harmsen, 2014), and the storage carbohydrate mannitol (used as a 
sweetener), along with containing proteins (Stanley et al., 2019). However, despite 
S. latissima proven to be successfully farmed under North Sea conditions (Kieckens, 
2021; Broch et al., 2019; Van den Burg et al., 2013), UK seaweed cultivation 
remains an underexploited resource (Cai, 2021).      

Cultivating S. latissima as a source of protein     
There are many methods for farming S. latissima and depending on the farm site 
characteristics different approaches to spore production, seeding, harvesting and 
post-harvest treatment are used (Forbord et al., 2020; Stanley et al., 2019; Blikra et 
al., 2019). However, a pH-shift extraction method (Harrysson et al., 2018) and the 
use of sonication and enzymes have proven to be effective methods for extracting 
proteins from S. latissima (Klyve, 2020). Furthermore, though the total protein 
content of S. latissima depends on environmental conditions, season, and 
processing methods (Marinho et al., 2015a), S. latissimas protein content has shown 
to be highest when out planted in autumn and harvested in early spring (Bak et al., 
2019), giving S. latissima the potential to be a suitable choice for producing an 
alternative source of protein (Pereira, 2016).               
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Additionally, S. latissima contains an abundance of iodine (Aakre et al., 2021), a vital 
mineral for the secretion of thyroid hormones triiodothyronine and thyroxine 
(Zimmermann, 2011; Opazo et al., 2020). This is significant as, a study on UK 
individuals following omnivore, vegetarian and vegan diets found that vegans and 
vegetarians had a significantly higher risk of iodine deficiency when compared to 
omnivores (Eveleigh et al., 2022). Furthermore, S. latissima also contains 
photosynthetic bioactive compounds that are absent from terrestrial plants (Brown et 
al., 2014) such as fucoxanthin, which has antioxidant and anticancer properties 
(Wang et al., 2019; Pangestuti and Kim, 2017).                                              

Aim and objectives         

This paper aims to identify suitable areas for S. latissima cultivation as an alternative 
source of protein for human consumption within England's North Sea exclusive 
economic zone (EEZ), an area where seaweed cultivation has potential but is 
currently underexploited. The outcomes of this research aim to provide a valuable 
decision-making tool that involves stakeholders to implement an English North Sea 
S. latissima farm, that ultimately could contribute towards sustainable protein 
production.                    
   
This study’s objectives to achieve the aim are:         
 

• To examine the main requirements for S. latissima aquaculture.  
 

• To identify and set appropriate criteria parameters for each requirement through 
a multi-criteria decision analysis.  

 

• To conduct geographical information system (GIS) modelling to map out the 
parameters of each variable into constraint layers within the study area (English 
North Sea EEZ).         

 

• To identify any areas that have the potential for S. latissima cultivation using a 
Boolean modelling technique and analyse the feasibility for suitable areas to 
produce a source of protein.        

Methodology   

Study procedure  

The main parameters which need to be considered to determine the location for an 
aquaculture site include technical, planning and biological suitability variables (MMO, 
2020; Buck et al., 2018). Every variable within these parameters was identified to 
evaluate if the constraint could jeopardise the instalment of an aquaculture site. 
Next, a multi-criteria decision analysis (MCDA) which has been approved as an 
effective method for geovisualisation studies (Malczewski and Rinner, 2015), was 
conducted to determine the relevant criteria for each factor. The selected constraints 
were then mapped out and overlayed using a Boolene modelling technique, which 
meant that only places that met every criterion were classed as an appropriate area 
for S. latissima cultivation. Then the Boolene modelling results were analysed to 
assess the area's potential feasibility to yield a source of protein. This study process 
has been depicted throughout the flow diagram in figure 2a, b, c and d.   
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To identify suitable areas for S. latissimi cultivation, as an alternative 

source of protein for human consumption in England’s North Sea EEZ. 
Aim

Step 1: Twenty variables that need to be 

considered for the placement of an S. latissimi 

farm were identified. 

Requirements (technical, planning and 

biological constraints) for the development 

of an aquaculture site in England's EEZ.

Based on 

Step 1: Twenty variables that need to be 

considered for the placement of an S. latissimi 

farm were identified. 

Requirements (technical, planning and 

biological constraints) for the development 

of an aquaculture site in England's EEZ.

Based on 

Area limitations:

- Exclusive 

economic zone

- Territorial seas

- Temperature 

- Salinity 

- Light climate

- Nutrient availability 

- Current speed 

Planning constraints: 

- Significant wave height

- Bathymetry

- Seafloor substrate

- Current speed

Soft constraints:

- Marine traffic

- Fishing 

- Marine protected 

areas

- Habitats

Hard constraints:

- Cables and Pipelines

- Ports

- Munition dumps

- Protected historic wrecks

- Offshore energy sector

- Hydrocarbon fields

- Wind farms

- Marine aggregate extraction 

zones

Technical suitability:

Biological suitability:

Model description                     

The Boolean data logic is that there can only be two possible values (true or false) 
meaning that an area either is or is not suitable. Boolean modelling was the chosen 
technique as it has been verified as an appropriate method by other spatial analysis 
studies’ including: Jahangiri et al., 2016; Eskandari et al., 2016; Longdill et al., 2008; 
Al-Adamat et al., 2010; Thomas et al., 2019 and Machiwal et al., 2015. Additionally, 
Boolean results will clearly illustrate areas that have or do not have a capacity for S. 
latissima farming which will reduce potential stakeholder conflicts (Eastman, 2006).       

Software and materials              

Scientific literature, secondary data, and GIS software were used to conduct the 
MCDA and map out constraints for the Boolean assessment. ArcGIS was the 
selected computer program as it is a powerful tool that supports input, visualisation, 
and modelling for spatial data (Malczewski, 2010). The data search focused on 
ArcGIS compatible datasets and for this data availability and cost-free access were 
factors that influenced the selection of datasets (table 1).                  

Figure 2a: Step 1, illustration of the aim and identification of variables, within the 
sequence of steps taken in the methodological procedure to establish the research aim. 

S. latissima refers to Saccharina latissima, EEZ refers to exclusive economic zone.  
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Figure 2b: Step 2, illustration and explanation of the sequence of steps taken in the 
multi-criteria decision analysis within the methodological procedure to establish the 
research aim. S. latissima refers to Saccharina latissima, EEZ refers to exclusive 

economic zone. 

This included: Analysing different 

criteria for the appropriate bathymetry 

of an S. latissimi farm, which was 

done by investigating the origin of 

values found within reviewed 

literature. For instance: 

• Was the study justifying the 

appropriate bathymetry for seaweed 

farming through a theoretical theory 

or case study? 

• Has the study limited the proposed 

appropriate farm depth due to 

economic cost or what is technically 

achievable? Et cetera.

These different factors were taken 

into account to provide the criteria 

analysis with logic for a bathymetry 

decision to be made. 

Technical 

stability 

variables

Bathymetry decision

Multiple identified criteria

Significant wave 

height 

Bathymetry

Seafloor substrate

Current speed

Criteria analysis

The placement of an S. latissimi

farm should be between              
-5 - -200m.

The MMO (2019a) recommend depths 

deeper than 4m.

Nylund (2016) found that depths of 

100m can be considered practical.

S. latissima has been successfully 

cultivated where the infostructure 

reached depths of -50 - -200m (Bak et 

al., 2018).

Bahaj et al., (2020) and The Crown 

Estate (2019) agree that more than       

-60m below the lowest astronomical 

tide level (LAT) operating a project 

becomes less economically feasible, 

and shallow sites (less than -5m below 

LAT) pose operational hazards.

Select sites 

that have 

capacity to 

become a 

seaweed farm

Goal

Identification 

of interests 

to achieve 

the aim 

1

2

3

4

5

6

Example of the multi-criteria decision analysis process:

Step 2: A decision for the parameters of each variable was established by 

analysing criteria identified through a Google Scholar literature review to 

form a conclusion on what is acceptable or is not acceptable for the 

placement of an S. latissimi farm.  
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Figure 2c: Step 3, illustration of the sequence of steps taken in the methodological 
procedure to establish the research aim. S. latissima refers to Saccharina latissima, EEZ 
refers to exclusive economic zone. Graphic contributions based on materials from: MMO 

(2019); EMODnet (2016); and ABPmer (2008). 
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Uncertainties             

The Boolean approach has no trade-off as it is a straightforward overlay of all maps. 
Thus, the Boolean model assumes that each criterion has equal significance but, not 
all layers will have the same impact on the suitability of an aquaculture site.    

Decision making                        
To carry out the GIS-based MCDA all chosen criteria their justification and the 
setting of their parameters was reliant upon decision-making, this implies there will 
be uncertainties related to human error. To conclude a MCDA is an individual tool 
thus, by applying different reasoning and interpretation of data the choices made 
throughout this study are subject to discussion.                   

Data sources         
All GIS databases (table 1) have been quality controlled by the platform authoriser 
(ArcGIS, 2021). However, this report acknowledges that it had no control over the 
accuracy of data quality inspections.                                 
 
 

Figure 2d: Step 4, illustration of the Boolean model overlay of all variables. Step 5 
shows the protein analysis, within the sequence of steps taken in the methodological 
procedure to establish the research aim. S. latissima refers to Saccharina latissima.  
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Table 1: Data source selection of the chosen ArcGIS and other geodatabase layers. The 
environmental suitability index layer is an intersection of salinity, temperature, light climate 

and nutrient variables which has been used to establish areas suitable for S. latissima growth. 

 
 
 

Results      
Tables 2a – 2d provide the criteria decision for each variable (a limitation or 
conflicting use of the North Sea) and the logic behind the decision, which was 
concluded by analysing multiple existing criteria for the site selection of an S. 
latissima farm. After the MCDA the established criteria for each variable (either 
defined as a constraint or factor) was then used as the parameters to create a 
Boolean suitability map. The Boolean model outcome was achieved by identifying 
areas that did not meet the criteria parameters (table 2a – 2d) for each variable and 
programming those locations as not suitable, which generated the spatial 
whereabouts of zones that are either suitable or unsuitable for the placement of an 
S. latissima aquaculture site.        
          

• S. latissima’s biological suitability (table 2a) shows that all environmental 
variables are fundamental for the growth of S. latissima thus, areas which have 
unsuitable conditions cannot be considered for the placement of a seaweed farm. 

Layer ArcGIS geodatabase source 

Authorised (2022) seabed aggregate 
extraction sites 

The Crown Estate, 2022 

Cables and pipelines Infrapedia, 2018; TeleGeography, 2016 

Exclusive economic zone UK Hydrographic Office, 2018 

Fishing density The Maritime and Coastguard Agency, 2020 

Marine protected areas JNCC, 2022 

Marine Traffic The Maritime and Coastguard Agency, 2020 

Munition dumps EMODnet, 2018 

Offshore wind cable area agreement The Crown Estate, 2021 

Offshore wind energy sites Esri, 2017 

Offshore wind farm development zones Global Offshore Wind Farm Database, 2019; 
OSPAR, 2016 

Oil and gas fields Leeuwarden, 2021  

Shipping ports National Geospatial Intelligence Agency, 2018 

UK territorial limit Seafish, 2021 

Layer Data source 

Bathymetry EMODnet, 2016; North Sea Observation and 
Assessment of Habitats, 2014 

Environmental suitability index MMO, 2019 

Mean peak current speed ABPmer, 2008 

Mean significant wave height ABPmer, 2008 

Protected wrecks Maritime & Coastguard Agency, 2020 
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• All soft and hard planning variables (tables 2b and 2c, respectively) will influence 
the placement of a seaweed farm. However, the MCDA showed that hard 
planning variables were mainly constraints, meaning that a potential cultivation 
site cannot coexist among the location of these variables. Whereas table 2b 
showed that the criteria parameters for soft planning variables were more factor-
based.  

• Table 2d identified the criteria for culture-specific technical suitability and found 
that to an extent the ability for a seaweed cultivation site to withstand offshore 
conditions relies upon the selected farm infostructure, rather than the prevailing 
environmental conditions. For example, table 2d showed that when considering 
bathymetry although the seaweed itself will usually be in the top 15m of the water 
column, the farm can be situated in deeper waters as anchors and floats hold the 
kelp vertically in place. Every location within the study area that did not meet the 
criteria of the technical parameter decisions was programmed as unsuitable 
within the Boolean GIS modelling.   
 

 

 
 

Variable Decision Criteria Reason 

Sea Surface 
Temperature 

(SST) (°c) 

Factor  Prohibit cultivation 
from areas where the 
annual extreme SST 
is <2°c and / or >18°c 

• The environmental threshold for the 
growth of S. latissima’s is between 2°c - 
18°c (Bolton and Lüning,1982; Kerrison et 
al., 2015). 

Salinity 

parts per 
thousand (ppt) 

Factor Prohibit cultivation 
from areas where the 
annual extreme 
salinity is <15 ppt 

• Because of effects on osmotic processes 
salinity <15 ppt is not suitable for the 
growth of S. latissima (Kerrison et al., 
2015; Smale et al., 2016). 

Kd 

Photosyntheticall
y active radiation 
(PAR) 10% light 
depth (m) 

Factor Prohibit cultivation 
from areas where 
there is <1 Kd (PAR) 
10% light depth (m) 

• Due to photosynthetic requirements <1 Kd 

(PAR) 10% light depth (m) is unsuitable for 
S. latissima growth (MMO, 2019; van der 
Molen et al., 2018; Guo et al., 2015).    

• However, when cultivating kelp there is 
scope to enhance light climate conditions 
by optimising the infostructure position in 
the water column (MMO, 2019). 

Winter total 
oxidised nitrogen 

 

(TOxN mmol/m3) 

Factor Prohibit cultivation 
from areas where the 
annual extreme TOxN 
is <4 mmol/m3 

  

• Nitrates are essential for seaweed growth 
and although during winter kelps can store 
nitrogen to make proteins in spring (Van 
den Burg et al., 2013), a TOxN <4 
mmol/m3 is unsuitable for the 
environmental threshold of S. latissima 
(Broch et al., 2013; Kerrison et al., 2015).   

Current speed 
(m/s) 

Factor 
Prohibit cultivation 

from areas where the 
annual extreme 
current speed is 

>1.5 m/s or <0.1 m/s 

• Buck et al., (2005) and the MMO (2019) 
recommend current speeds of <1.5m/s for 
the biological suitability of farmed S. 
latissima.  

• Current speeds <0.1m/s may not be 
suitable to support the growth of S. 
latissima (MMO, 2019).     

Table 2a: Multi-criteria decision for environmental variables that are all based on the 
natural growth of S. latissima bar current speed which represents values for cultivation. 
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Variable Decision Criteria Reason 

 

Marine traffic 

 

Factor 

 

Prohibit cultivation from 
areas with >20.1 vessels 
crossing per week 
(these areas include 
commercial shipping 
lanes) 

• Thomas et al., (2019) and Nunes da Silva Ramos 
(2016) agree that areas with a vessel traffic density of 
< 20.1 vessels crossing per week are suitable for 
macroalgae cultivation site selection.   

 

• Aquaculture areas should not coincide with 
commercial shipping lanes due to socio-economic 
impacts (Roesijadi et al., 2011; Siddiqui, 2018).  

 

Fishing 
intensity 

 

Factor 

 

Avoid cultivation in 
fishing grounds, 
identified by fishing 
vessel tracks   

 

(≥10h fishing / km
2
 / 

month) 

  

• Seaweed cultivation should be restrained from 
fishing and trawling grounds (Siddiqui, 2018), which 
can be identified by analysing GIS-based fishing 
vessel track density (Mendo et al., 2019; Jennings 
and Lee, 2012).   

 

• For instance, EMODnet (2020) has depicted areas 

of ≥ 10 hours of fishing activity per km
2
 per month as 

significant fishing grounds.     

 

Marine 
Protected 
Areas 
(MPA’s) 

 

Constraint 

 

Prohibit cultivation within 
MPA’s 

• Existing legal framework does not automatically 
authorize aquaculture in MPA's (Wood et al., 2017; 
Capuzzo et al., 2016).  

 

• However, dependent on the outcome of site-specific 
surveys permission may be granted (Wood et al., 
2017).   

 

Habitats 

 

Factor  

Prohibit cultivation within 
protected habitats 
(MPA’s) 

 

Assess local habitats 
upon site selection 

• Protected habitats can be avoided by prohibiting 
cultivation within all MPA’s (JNCC, 2021; Wood et al., 
2017).  

 

• After a proposed farm site is selected the 
surrounding habitats need to be assessed (e.g., this 
could include an environmental impact assessment) 
(Wood et al., 2017).   

 

Area 
limitations 

 

Constraint 

 

Prohibit cultivation within 
territorial seas and 
outside of the English 
EEZ 

• An English cultivation site is restricted to within the 
English exclusive economic zone (EEZ) (MMO, 
2019a). 

 

• Options for the selection of a farm site may be 
limited within territorial seas (MMO, 2019a) due to 
stricter planning regulations for example, those posed 
by The Crown Estate. Thus, legally permitting farming 
in these waters can be challenging and it also has a 
greater risk of stakeholder conflicts (Wood et al., 
2017).  

Table 2b: Criteria for the planning suitability regarding soft constraint variables for S. 
latissima cultivation.  
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Variable Decision Criteria Reason 

Cables 
and 
Pipelines 

Constraint  Prohibit 
cultivation on 
and above 
cables and 

Pipelines 

• Cultivation infostructure (e.g., anchors) that drift or 
are deployed onto a cable or pipeline can cause 
displacement and breakages resulting in high 
economic damage for repair costs (European 
Subsea Cables Association, 2020; Anderson, 2017).  

 

• This is partially concerning in the North Sea due to 
the significance of electricity cables transporting 
energy from offshore wind farms to the mainland 
(European Commission, 2021; Office for National 
Statistics, 2021a).   

Ports Factor Restrain 
cultivation in and 
around close 
proximities to 
ports 

• Sites near a port may act as an auxiliary to 
cultivation efficiency by providing loading and 
unloading facilities (Roberts et al., 2021).  

 

• However, farms in a very close proximity can 
cause marine traffic associated obstructions due to 
the overcrowding of sea space (Thomas et al., 
2019).      

Munition 
dumps 

Constraint Prohibit 
cultivation over 
munition dumps 

• Munition dumps are a human and marine health 
hazard risk and thus should be avoided (Beck et al., 
2018; Wilkinson, 2017). 

Protected 
historic 
wrecks 

Constraint  Prohibit 
cultivation over 
protected wrecks 

• In the absence of a licence granted by the 
Secretary of State it is a criminal offence to deploy 
equipment (e.g., anchors) or obstruct access to 
protected wreck sites (Historic England, 2015).  

Offshore 
energy 
sector 

Constraint Prohibit 
cultivation within 
licenced energy 
sector areas  

• Although the use of sea space can be optimised 
by co-locating offshore wind farms or oil platforms 
with aquaculture sites (Lee, 2020; Jansen et al., 
2017), permitting this involves risks (Lacroix and 
Pioch, 2011) and requires stakeholder 
collaborations that cannot be guaranteed. 
Subsequently, farm site authorisation within the 
energy sector is not ensured (Van den Burg et al., 
2020).      

 

• Consequently, for this analysis energy sector 
areas were not considered appropriate for a farm 
site.   

Marine 
aggregate 
extraction 
zones 

Constraint Prohibit 
cultivation within 
marine 
aggregate 
extraction zones 

• Areas of current licensed marine aggregate 
extraction zones will need to be avoided due to a 
conflict of interest and the release of surplus 
sediment into the water column which affects 
seaweed growth (Kenny et al., 2018). 

Table 2c: Criteria for the planning suitability, regarding hard constraint variables for 
S. latissima cultivation.  
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Variable Decision Criteria Reason 

Significant 
wave height 

Factor  Prohibit 
cultivation from 
areas where the 
significant wave 
height can 

exceed 2.5m 

• Cultivated S. latissima in the North Sea and Faroe Islands have 
shown to have a peak wave height tolerance of approximately 
6.5m (Buck and Buchholz, 2005) and 8m (Buck et al., 2018), 
respectively. 

 

• The MMO (2019) considers an optimum farm wave height of <4. 

 

• The Crown Estate (2019) and Bahaj et al., 

(2020) suggests that significant wave heights exceeding >2.5m 
create unsafe working conditions.    

 

• Zhu et al., (2021 and 2020) found that S. latissima aquaculture 
attenuates waves, suggesting that suspended canopies could 
tolerate high energy wave environments.            

Bathymetry Factor Prohibit 
cultivation from 

areas where the 
bathymetry is 
less than -5m or 
greater than -
200m 

• The MMO (2020 and 2019a) recommend depths deeper than 
4m.    

 

• Nylund (2016) found that depths of 100m can be considered 
practical.   

 

• S. latissima has been successfully cultivated where the 
infostructure reached depths of -50 - -200m (Bak et al., 2018).    

 

• Bahaj et al., (2020) and The Crown Estate (2019) agree that, at 
depths >-60m below the lowest astronomical tide level (LAT) 
operating a project becomes less economically feasible, and 

shallow sites (less than -5m below LAT) pose operational 
hazards. 

Seafloor 
substrate 

Factor Infostructure 
dependent 

• Although a firm substrate may be the most suitable for the use 
of moorings for long-lines, cultivation anchors are selected 
depending on the type of seafloor substrate thus, substrate will 
not restrict the positioning of a seaweed farm (Cardia et al., 
2015).  

Current speed Factor Prohibit 
cultivation from 
areas where the 
current speed is 
>1.5 or <0.1 
(m/s) 

• Despite limited research on the recommended current speed for 
seaweed cultivation it is considered a critical technical factor as it 
exerts stress on aquaculture infostructure (Cardia et al., 2015).  

 

• Buck and Buchholz (2005) found the infostructure current speed 
tolerance of a North Sea S. latissima farm was ∼1.5m/s before 

the kelp holdfasts became displaced.   

• The MMO (2019) recommends a current speed of between <1.5 
- >0.1m/s for the biological suitability of farmed S. latissima.   

Table 2d: Multi-criteria decision for culture-specific technical suitability variables for 
S. latissima cultivation. 
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Tables 2a – 2d: For this study the criteria decisions for each variable were 
considered a constraint if all the geographical areas of the variable are unsuitable. 
That is, if they completely constrained or physically prevented the development of an 
aquaculture site. For example, this could be legislative or political boundaries (e.g., 
marine protected areas and exclusive economic zones) or barriers (e.g., oil 
platforms). Whereas the criteria decisions for each variable were considered as a 
factor, if out of all the geographical regions where the variable can be found some of 
the areas were suitable, but in other areas where the same variable is present the 
location is unsuitable. For example, this could be environmental variables (e.g., 
salinity, where areas <15 ppt are unsuitable but areas >15 ppt are suitable) or 
planning variables (e.g., marine traffic, where areas that have >20.1 vessels passing 
per week are unsuitable but areas of <20.1 are suitable).      
 

Main findings         
The North Sea is an intensively utilised and crowded area with many socio-economic 
activities competing for space. Figure 3 acknowledges the influence of the variables 
from each layer (environmental, planning and technical suitability factors) on the site 
selection for S. latissima cultivation. Ultimately, figure 3 shows that soft constraints 
are the most limiting in terms of space availability. However, tables 2a – 2d indicated 
that hard planning variables (figure 3) have the highest restrictions in terms of 
physical constraints preventing the implementation of an S. latissima farm. Yet, 
many of the restrictions posed by technical variables (figure 3, table 2d) can be 
mitigated by decisions such as the choice of structural design and cultivation 
technology.            
  

Key results    

The Boolean model is the result of overlaying areas that did not meet the criteria of 
every input layer (to view individual layers involved in creating the Boolean model 
please refer to this paper's supplementary material). Figure 4 is a geovisualisation of 
the Boolean model results showing there is scope for the growth and farming of S. 
latissima in the English EEZ within the North Sea region. The suitable regions are all 
spatially distributed offshore in exposed areas and can be divided into a few smaller 
isolated sections and one more extensive zone. However, when combined suitable 
areas cover ∼2.05 million hectares (∼20,500km2).      
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 Unsuitable 
areas   

Figure 3: Boolean areas within each section (environmental, technical and planning) 
that will confine the development of an Saccharina latissima farm. These results have 

been formed from the Boolean modelling of each criterion (established through a multi-
criteria decision analysis in tables 2a – 2d) from the four constraint categories: 

Environmental variables, technical variables, soft planning variables and hard planning 
variables. Made using ArcGIS with all data and base layer sources from table 1.   
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Discussion                                   
The aim of this investigation was to identify suitable areas to cultivate S. latissimi as 
an alternative source of protein for human consumption in England’s North Sea EEZ. 
This study has produced a Boolean suitability index for S. latissimi farming that 
incorporates planning, technical and environmental constraints, which to the best of 
the author's knowledge has not been attempted before within the chosen study area. 
Results from the Boolean model have clearly demonstrated the whereabouts of 
∼2.05 million hectares (∼20,500km2) where there is scope for S. latissima 

cultivation. This area is roughly equivalent to the land coverage of Wales (∼20,780 
km2) (figure 6) which indicates there is large capacity for cultivation within the North 
Sea. These results will potentially act as a valuable geographical decision-making 
tool that could help to reduce stakeholder conflicts when selecting areas for the 
implementation of a North Sea S. latissima farm; that could produce a more 
sustainable source of protein in comparison to traditional UK aquaculture and 
agriculture methods.                    

Evaluation of S. latissima cultivation within Boolean areas      

The next sub-sections (potential biomass production − amino acid profile and quality) 
investigates previous findings and current statistics. The reasoning behind this is to 

Figure 4: Suitability map of all areas combined from each section (environmental, 
technical and planning variables) that are either unsuitable (a) or suitable (b) for 

Saccharina latissima cultivation. This figure incorporates the layering of multi criteria from 
the planning, environmental and technical variable datasets, that together have created 

the spatial index of the Boolean suitable areas. Made using ArcGIS with all data and base 
layer sources from table 1.   
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Fresh weight 
biomass yield

(t ha-1) per year

Dry weight
(t ha-1) per year

Location Remark Reference

28 4.2 Sweden Upscaled from small-scale field 
trials.

Pechsiri et 
al., 2016

29 4.4 New 
England, 

North East 
USA

Estimations of a 1 ha hypothetical 
kelp farm, based on years of S. 

latissimi cultivation yields.

Yarish et al.,
2017

40 6 Galicia, 

Spain

Estimates from trial site biomass 

values.

Peteiro and 

Freire, 2013

45 6.8 Western 
Norway

Upscaled potential, form the IMTA 
of Salmon and S. latissima.

Fossberg et 
al., 2018

75 11.3 Norway Model based estimate for average 

within entire Norwegian baseline.

Broch et al., 

2019

95 14.3 Eastern 
Canada

Recalculated by Broch et al., 
(2019) from a yield of 19.95t per 

0.21ha.

Reid et al., 
2013

170 25.5 Norway Predictions from an analysis on 

seaweed biobased products.

Skjermo et 

al., 2014

200 30 Norway Based on values that have been 
upscaled.

Masson et 
al., 2015

220 33 Scotland Upscaled from small scale field 

trials in IMTA.

Sanderson et 

al., 2012

230 34.5 Norway Model-based estimate for a 
(September deployment) maximal 

yield in the entire Norwegian 
baseline.

Broch et al., 
2019

383 57.5 Central 

Norway

Upscaled by Broch et al., (2019) 

from yield reports of 38.3kg / m-2

from February - June.

Sharma et 

al., 2018

Mean value = 138

Standard deviation 

= 113

Mean value = 21

Standard 

deviation = 17

establish a baseline so that results from this study’s Boolean modelling can be related 
to the present state of knowledge within the existing field of S. latissima cultivation.     
 

Potential biomass production              
There are large variations in the predicted biomass that an S. latissima farm can 
produce (table 3). For instance, under optimum conditions 57.5 tonnes (t) of dry weight 
(DW) S. latissima could be produced per hectare (ha) (0.01km2) per year (Sharma et 
al., 2018) (table 3). In contrast, other trials have estimated the annual DW production 
of S. latissima at 4.2 (t ha-1) (Pechsiri et al., 2016) (table 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Previously published yield estimates for S. latissima cultivation, by fresh weight 
biomass potential in different geographical regions. Skjermo et al., (2014) has 

approximated that S. latissima biomass is 85% water weight, so the dry weight (15%) has 
been calculated for every fresh weight reference using this value. Literature was reviewed 
using Google Scholar with key search terms: S. latissima, cultivation and biomass. t ha-1, 
refers to tonnes per hectare (0.01 km2), IMTA is integrated multi-trophic aquaculture and 

per year relates to one cultivation cycle. 
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This is because variables such as time of out planting, harvesting, the depth and 
spacing of long lines and nutrient availability, differ between sites and 
approximations. However, the mean DW value among reviewed literature (key 
Google Scholar search terms: S. latissima, cultivation and biomass) is 21 (t ha-1) 
(table 3). This potential production is over double in comparison to some of the UK’s 
most cultivated arable primary producers such as wheat (DEFRA, 2020) (figure 5).                                        
                 
Potential protein production                                                        
Research has highlighted that the composition of macronutrients in S. latissima is 
subject to debate (Stanley et al., 2019). For instance, values of the percentage of 
protein in S. latissima have been found to considerably range between 4.3% - 26% 
(Bak et al., 2019; Pereira, 2016). This is partly due to factors such as the timing of 
harvest as S. latissima’s composition fluctuates throughout different seasons (Tiwari 
and Troy, 2015) for instance, S. latissima reaches its highest protein content in 
autumn – early spring while peak carbohydrate content and biomass yields occur in 
the summer months (June – August) (Bak et al., 2019; Schiener et al., 2015). 
Furthermore, different offshore cultivation sites can have unique environmental 
conditions including nutrient availability which impacts S. latissima’s biochemical 
composition thus, protein percentage (Slegers et al., 2021). Moreover, there is a lack 
in understanding of how different S. latissima ecotypes respond to environmental 
changes, which makes quantifying protein content for the species across a large 
geographical range inexact (Broch et al., 2019). Additionally, contradicting 
estimations could originate from the different nitrogen-to-protein conversion factors 
that can be relied on for total protein content determination, which can result in an 
under or over estimation (Bak et al., 2019). Furthermore, some studies use different 
methods altogether such as a quantitative amino acid analysis (Bak et al., 
2019).                                                                                                      
 
The protein composition of S. latissima cultured in the UK, Norway and North Sea 
area has been valued at ∼10% (Nielsen et al., 2020; Monteiro et al., 2020; Marinho 
et al., 2015a) if deployed in autumn and harvested in spring (March – May) (Nielsen 
et al., 2020; Marinho et al., 2015a). Based on the mean DW biomass production of 
21t per ha-1 (table 3, figure 5), this would imply that a 1ha and 1km2 S. latissima farm 
in the North Sea could annually (every cultivation cycle) produce 2.1t and 210t of 
DW protein, respectively. For comparison purposes, when related to the UK’s most 
cultivated arable crop, wheat, which is ∼13% protein, S. latissima’s protein content is 
3% lower. However, per hectare S. latissima cultivation would produce almost 
double the volume of protein (2.1t DW protein ha-1) than wheat (1.1t DW protein ha-1) 
due to its high biomass yield (table 3, figure 5). Although, in comparison to the 
protein yielded from higher trophic levels, on the basis that in the UK there is 
capacity for 2500 free-range chickens per ha-1 (DEFRA, 2019), ∼5.5 tonnes of 
protein per ha-1 per year can be produced from chicken eggs (6g protein per egg) 
(USDA, 2019). This value is ∼2.6* (times) higher than potential S. latissima yields. 

However, food production from higher trophic levels requires more resources and is 
usually a bigger burden on the environment (Notarnicola et al., 2017; Smil, 2014; 
Reijnders et al., 2003; Smil, 2002).                                 
                    
To put S. latissima’s yield predictions (table 3) into perspective, roughly every 
12,000ha (120km2) (figure 6) would supply 1% of the UK’s population (670,000 
people) (Office for National Statistics, 2021) with their yearly protein demand 
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Standard 

deviation 

Cultivated Crop Type

21 8.4 4.9 3.5

= 17

(∼25,400t of protein) when using the most recent (2017) daily per capita protein 
consumption prediction of 104g (figure 1) (FAO, 2018). However, using the highest 
hypothetical S. latissima DW yield (57.5t ha-1) (table 3) and protein content (26%) 
predictions (Pereira, 2016) that are based on growth under optimum conditions 
(equivalent to a protein yield of ∼15t per ha), this would reduce the 12,000ha area 
required to ∼1690ha (16.9km2).        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                         
     
 
 
 
 
 
 
From a different evaluation viewpoint, if the protein yielded by North Sea S. latissima 
cultivation were to supply 5% of the UK’s population (3.35 million people) (Office for 
National Statistics, 2021) with their current protein demand (104g per day (figure 1), 
10,452t per month) (FAO, 2018) for one month (30 days), then using the average 
protein yield (2.1t ha-1) and content (10%) predictions, approximately 5000ha 
(50km2) would have to be utilised. Figure 6 illustrates the area required if the monthly 
protein demand from 5% of the population were to be met by S. latissima farming. 
Marine Scotland (2017) has defined a small-medium farm as ≤ 0-50 x 200m 
seaweed cultivation lines, and with 1.5m line spacing 50 lines would cover 1.5ha 
(0.015km2). This means that if the demand were to be met by a series of small-
medium size S. latissima farms (illustrated in figure 6) 3333 cultivation sites would be 
required.         
 
 
 

Figure 5: The mean dry weight yield in tonnes per hectare (0.01Km2) per year for 
Saccharina latissima grown across different geographical regions (using findings from 
table 3), in comparison to some of the UK’s most cultivated arable crops. The error bar 
is at a 99.9% confidence level. Values for wheat, oats and oilseed rape are a five-year 

(2015 – 2020) average of UK yield data. Data source (DEFRA, 2020). 
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It is important to know that this study does not suggest the implication of 3333* 1.5ha 
macroalgae farms. Rather, these statistics and figure 6 have been used to 
demonstrate the scale of cultivation in relation to the significance of potential yields.    

                                                
  
  

 

 

 

 

Amino acid profile and quality                             
The essential amino acids to total amino acid (EAA/TAA) ratio is used to assess the 
quality of protein within food for human consumption (Bleakley et al., 2017; Černá, 
2011). A study in the Faroe Islands found that essential amino acids that humans 
cannot self-synthesise for example, lysine which is a valuable EAA within the protein 
economy (Leinonen et al., 2019), have been found to make up >50% of the amino 
acids in S. latissima when harvested in March (Bak et al., 2019). A food with an EAA 
score of >100% means that the quantity of EAA’s exceeds ratio requirements (mg 
EAA/g protein) for 3 –10-year-olds (WHO, 2007), and findings from Bak et al., (2019) 
show that S. latissima had a score of 106% (when harvested in March), indicating 
that that the protein content in S. latissima is high quality (WHO, 2007). Furthermore, 
Bak et al., (2019) found that regardless of total protein percentage the ratio of 

Figure 6: Illustration of areas that would have to be utilised to produce enough protein to 
supply 1% of the UK’s population with their yearly protein demand (∼12,000ha) and 5% of 

the UK’s population with their monthly protein demand (∼5000ha). This figure also 

demonstrates the scale of a small-medium size farm (1.5ha) within a ∼5000ha area. It 
would take 3333 of these small-medium size farms to cover a total area of 5000ha. Areas 

to demonstrate scale have been placed at random within the Boolean suitability map. Made 
using ArcGIS, ha refers to hectare. 
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• Yields biomass 

that can be used 

as a food source.

Target 2:
.

Zero hunger

“End hunger, 

achieve food 

security and 

improved nutrition 

and promote 

sustainable 

agriculture.”

Target 12:
.

Responsible 

consumption and 

production

“Ensure 

sustainable 

consumption and 

production 

patterns.”

Target 13:

Climate action

“Take urgent 

action to combat 

climate change 

and its impacts.”

Target 14:
.

Life below water

“Conserve and 

sustainably use the 

oceans, seas and 

marine resources 

for sustainable 

development.”

How Saccharina latissim a cultivation can contribute.

Four of the United Nations targets for the 2030 Agenda on 

Sustainable Development

•No fresh water, land 

or fertilizers to 

produce biomass for:
.

• Food, cosmetics, 

pharmaceuticals, feed, 

fertilizers, bio-fuels 

& bio-plastics.

• Uptakes CO2

• Buffers ocean 

acidification

• Potential to be a 

carbon-neutral food 

source.

• Creates a habitat

• Provides 

ecosystem services

• Yields biomass that 

can be used as a food 
source (Holdt and 

Kraan, 2011).

• Contains essential 

micronutrients for 
human wellbeing 

(Aakre et al., 2021)

• Uptakes CO2 (Yarish

et al., 2017) 
.

• Buffers ocean 

acidification (Xiao et 

al., 2021).
.

• Potential to be a 

carbon-neutral food 
source (Krause-

Jensen and Duarte, 

2016).

• Creates habitats 

(Wood et al., 2017)
.

• Provides ecosystem 

services (Campbellet

al.,.2019) e.g..mitigates
eutrophication (Visch

et al., 2020) and 

improves biodiversity 

which in turn may 

increase fish stock 
(Hiddink et al., 2008)

No fresh water, land or 

fertilizers to produce 
biomass (Stanley et 

al., 2019) for: 
.
.

• Cosmetics and 
pharmaceuticals (Smit, 

2004). Food, feed and 

fertilizers (Schlarb-

Ridley, 2013). Bio-

fuels and bio-plastics 
(Fasahati et al., 2015). 

How Saccharina latissim a cultivation can contribute.

Four of the United Nations targets for the 2030 agenda on 

sustainable development

• No fresh water, land, 

or fertiliser to produce 
biomass (Stanley et 
al., 2019) for: 

different amino acids in S. latissima does not significantly deviate between cultivation 
depth and exposed or sheltered cultivation sites.     

 Environmental interactions  

The rationale behind this project was the unprecedented need for the sustainable 
production of resources. Both positive and negative environmental modifications can 
be correlated to macroalgae cultivation (Xiao et al., 2021; Seghetta et al., 2016). 
However, if appropriate measures are put in place S. latissima can be sustainably 
cultivated (Campbell et al., 2019). Furthermore, sustainable S. latissima aquaculture 
and the ecosystem services that it yields could have socio-economic benefits (Visch 
et al., 2020; Wood et al., 2017), which would help the UK to reach 2030 goals such 
as those set by the United Nations (UN, 2020) (figure 7).    
  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

 

Figure 7: The United Nations sustainable development goals and how seaweed farming 
could help to reach these targets. Target quotations are credit of the United Nations (2020). 



The Plymouth Student Scientist, 2022, 15, (2), 320-357 

 

342 
 

This may contribute towards an assortment of different solutions that together might 
help ease the rate of climate change whilst still allowing humanity to develop (Yarish 
et al., 2017; Duarte et al., 2017).        

Conclusion       
Decision-makers will have an essential role in tackling challenges related to the 
growing human population and the subsequent snowballing increase in food supply 
demands, which present complicated sustainability challenges. However, this study’s 
Boolean modelling has identified the whereabouts of ∼2.05 million hectares 
(∼20,500km2) suitable for S. latissima cultivation absent of environmental, technical, 
and planning constraints, within the highly utilised English North Sea area. This is 
significant as sections of this identified area could be used to produce a currently 
underexploited alternative food source. Furthermore, if properly controlled this 
production would efficiently and sustainably utilise the ocean's resources to 
contribute towards meeting the unprecedented rise in resource demands.       
 

Upon analysis, the Boolean feasible areas have capacity to produce large quantities 
of S. latissima biomass that could make a meaningful contribution to the UK’s protein 
supply. However, there are many predictions for S. latissima’s protein content at the 
lower end of values when compared to other UK farmed foods, and the protein 
percentage of S. latissima within the identified Boolean areas remains uncertain. 
Therefore, at present, prospects for S. latissima solely as a source of protein remain 
very limited. Consequently, the cultivation of North Sea S. latissima currently should 
not be regarded as a potential viable protein supply but, rather as an alternative food 
source which has a high-quality amino acid profile, contains bioactive compounds 
and essential minerals that can contribute towards overall human wellbeing.                

Future work   
Boolean approach    

As the Boolean model values each criterion with equivalent importance, outcomes 
presume that all Boolean areas are equally suitable for farm site selection. 
Therefore, it is recommended that future work investigates this report’s Boolean 
areas using a suitability index weighted overlay, as this more detailed approach will 
be able to distinguish between adequate and highly optimum sites, which will help 
strengthen site selection decision-making.           

Quantifying yield expectation     

Examining existing literature indicated that S. latissima’s potential protein yield is 
subject to surrounding environmental conditions thus, predictions have large 
variability. Therefore, future work within trial sites is required to evaluate the site-
specific feasibility of an S. latissima farm to facilitate high protein yields. This could 
be achieved through water quality surveys. For example, by examining nitrogen 
concentrations the growth rate and protein percentage of S. latissima will have an 
increased confidence level.                     
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