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This paper discusses the results of eld-based
geological investigations of exhumed rocks exposed
in the Musgrave Ranges (Central Australia) and in
Nusfjord (Lofoten, Norway) that preserve evidence
for lower continental crustal earthquakes with
focal depths of approximately 25 40km. These
studies have established that deformation of the dry
lower continental crust is characterized by a cyclic
interplay between viscous creep (mylonitization) and
brittle, seismic slip associated with the formation of
pseudotachylytes (a solidi ed melt produced during
seismic slip along a fault in silicate rocks). Seismic
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slip triggers rheological weakening and a transition to viscous creep, which may be already
active during the immediate post-seismic deformation along faults initially characterized by
frictional melting and wall-rock damage. The cyclical interplay between seismic slip and
viscous creep implies transient oscillations in stress and strain rate, which are preserved in
the shear zone microstructure. In both localities, the spatial distribution of pseudotachylytes
is consistent with a local (deep) source for the transient high stresses required to generate
earthquakes in the lower crust. This deep source is the result of localized stress ampli cation
in dry and strong materials generated at the contacts with ductile shear zones, producing
multiple generations of pseudotachylyte over geological time. This implies that both the short-
and the long-term rheological evolution of the dry lower crust typical of continental interiors
is controlled by earthquake cycle deformation.

This article is part of a discussion meeting issue Understanding earthquakes using the
geological record .

. Introduction

Some 20% of intracontinental earthquakes of moment magnitude (My)>5 nucleate in the
middle to lower crust at focal depths of 20 40km [1,2]. For example, in the Himalaya a
signi cant proportion of seismicity, including aftershocks associated with the destructive 2001
Bhuj earthquake in India, nucleated in the lower crust of the Indian shield underthrusting
Tibet [1,3]. Likewise, crustal earthquakes at focal depths of 20 30 km regularly occur beneath
the northern foreland of the Central Alps [4]. Lower crustal earthquakes are also frequent in
active rifts (e.g. Bajkal rift: [5]; East African rift: [6]) and along major strike slip faults (e.g. North
Anatolian Fault: [7]).

The physical mechanisms that initiate lower crustal earthquakes are not well understood, as
the lower crust is expected to be rheologically weak and to deform by distributed viscous ow
at the high ambient P T conditions ([2] and refs. therein). However, the anhydrous conditions
and the lack of grain boundary uids in the lower crust inhibit crystal plastic deformation
and diffusive mass transfer, resulting in a lower crust with high viscosity and high mechanical
strength [8 14]. Thus, there is general consensus that a strong, seismogenic lower crust re ects
the rheology of anhydrous mineral assemblages, which are typically found in granulite facies
rocks [15,16].

The generation of earthquakes in the lower crust remains an intensely debated issue,
as it requires mechanisms capable of developing, at least transiently, very high differential
stresses. Transient seismic fracturing at these crustal levels has been attributed to the downward
propagation of seismic ruptures from the overlying brittle, seismogenic upper crust [17 19]. Stress
transfer from seismic faulting in the upper crust can induce a transient abrupt deepening of
the frictional viscous transition below the lower termination of the fault [20], and many lower
crustal aftershocks have been interpreted in this way [21,22]. However, the downward rupture
propagation and the stress transfer models are dif cult to reconcile with deep intracontinental
earthquakes that occur far from fault systems where shallow crustal seismicity is focused. For
example, lower crustal seismicity up to My 4 in the Alpine northern foreland occurs in a region
that does not host shallow seismicity [4]. Thus, alternative mechanisms by which earthquakes can
nucleate in the lower crust must be invoked.

In the absence of mechanical perturbations originating at shallower crustal levels, local
weakening mechanisms that could facilitate brittle failure and explain earthquake generation
in the lower crust include dehydration reactions, leading to increased uid pressure and/or
local stress redistributions, and eclogitization reactions [23 26]. Metamorphic earthquakes
and increased uid pressure require, however, syn-deformational reactions or local uid-rich
conditions that may not occur in all locations hosting lower crustal seismicity.

An alternative proposal to brittle rupture has been thermal runaway, where thermal feedback
in highly localized ductile shear zones leads to rapid slip and melting. Plastic deformation
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instabilities and shear-induced melting have long been considered a plausible explanation for
intermediate-depth and deep earthquakes and for the cyclic generation of pseudotachylytes in
shear zones [27 30]. This process was further investigated by numerical models for both mantle
and crustal rheologies [31 41], seismological studies [42,43] and experiments [44], showing that
pseudotachylytes can develop due to the positive feedback between shear heating and strain
rate, eventually leading to a catastrophic seismic slip failure and melting (thermal runaway).
This may occur at realistic background ow stresses in a shear zone [38,41], provided that
grain size reduction occurs prior to thermal runaway. However, although some cases of middle
and lower crustal pseudotachylyte/mylonite associations have been interpreted as being due to
plastic instabilities [30,37,45 48], unambiguous microstructural evidence for this process is still
missing [41].

Direct investigations of exhumed lower crustal sections have provided new insights into the
seismic activity and the rheology of these deeper crustal levels. These eld investigations have
consistently demonstrated that the deformation of the dry lower continental crust is characterized
by a cyclic interplay between viscous creep (mylonitization) and brittle, seismic fracturing
associated with the formation of pseudotachylytes [14,49 55]. A picture is emerging in which
a seismically active lower crust facilitates metamorphic and rheological transition in otherwise
dry, strong and metastable rocks [12,14,56]. Dynamic rupture propagation and seismic slip may
trigger grain size reduction, uid in Itration, weakening and a transition to aseismic, viscous
creep along faults initially characterized by fracturing, frictional melting and wall-rock damage
[14,57 59].

A few regions worldwide expose outstanding natural laboratories that enable direct
observations of seismic aseismic deformation cycles in the lower crust. These localities are
reported in table 1 and in gure 1, together with estimates of the P T conditions of
pseudotachylyte generation and the interpretation for their origin [19,41,45,46,50,52 54,60 76].

This article reviews recent developments in the study of the interplay between brittle seismic
fracturing and viscous deformation in the relatively dry lower crust, and argues that the
earthquake cycle controls the short- and long-term rheological evolution of the granulitic lower
crust typical of continental interiors. We focus on exhumed networks of coeval pseudotachylytes
and mylonites from the Musgrave Ranges (central Australia) and from Nusfjord (Lofoten,
Norway). We rst present and discuss observations from the Musgrave Ranges as an example
of an almost unique record of a well-exposed crustal-scale section of the seismic structure of the
middle to lower continental crust. We then present and discuss detailed meso- and microscale
observations from Nusfjord that provide an exceptional opportunity to investigate transient
deformation during the earthquake cycle in the lower crust.

. The Musgrave Ranges, central Australia

The EW-trending Musgrave Province is a Mesoproterozoic, granulite to amphibolite facies terrane
covering an area of about 120 000 km? in the centre of the Australian continent. The Province was
heterogeneously overprinted by high-strain deformation during the Petermann Orogeny (ca 630
520 Ma [78,79]). The oldest rocks are predominantly felsic orthogneisses, with ca 1600 1540 Ma
protolith ages (e.g. [78,80 83]), unconformably overlain by Late Mesoproterozoic (ca 1.4Ga
maximum age) metasedimentary rocks [84,85]. The most widespread tectono-thermal event in
the Musgrave Province is the ca 1220 1150 Ma Musgravian Orogeny, which produced high- to
ultrahigh-temperature (approx. 900 C) granulites [86,87] and voluminous anhydrous syn- to
post-tectonic granites (Pitjanjatjara Supersuite; [88]). Pressure estimates of the metamorphism,
in the range of 0.6 0.8 GPa [82,86,87], indicate mid-crustal conditions across the entire Province
during the Musgravian Orogeny. The Musgravian metamorphic imprint of the rocks now exposed
in the Musgrave Ranges played a fundamental role in determining their rheology during the
subsequent Petermann Orogeny. In the period between the Musgravian and the Petermann
Orogenies, two major dolerite dyke swarms were emplaced in the Province: (i) the Alcurra
swarm at ca 1080 Ma [89 91] and (ii) the Amata swarm at ca 800 Ma [90,92]. These dykes were
not deformed or metamorphosed prior to the subsequent Petermann Orogeny.
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Figure . (a) Pressure temperature (P T) diagram showing occurrences of associations of coeval pseudotachylytes and
mylonites listed in table . Standard uncertaintiesof . GPaand °Chave beenadded if ranges are not reported in the original
reference. Numbersfrom to  refer to the list orderin table , facies diagram redrawn from Winter [ . (b,c) Field examples of
pseudotachylytes from the selected localities discussed in this paper: (b) mylonitized pseudotachylyte with relict undeformed
injection veins crosscutting non-foliated gabbronorite from Nus ord, Lofoten [ ] and (c) pseudotachylyte breccia from the
Musgrave Ranges[ . (Online version in colour.)

(a) High-strain deformation and metamorphism during the Petermann Orogeny

A series of major shear zones developed during the Petermann Orogeny ( gure 2): the Woodroffe
Thrust, the northern and southern Davenport Shear Zone (DSZ), the Mann Fault (also a shear
zone) and the Ferdinand Shear Zone (FSZ) [61,62,78,83,94 101]. The presently exposed portions
of these regional structures were active at middle to lower crustal conditions and host the largest
known occurrences worldwide of pseudotachylyte broadly coeval with high-grade mylonite
[53,61 63,93,102]. The Woodroffe Thrust [94 96] is a crustal-scale structure that extends east-west
over more than 600 km, with a generally shallow to moderate southerly dip (approx. 30 ) and
a top-N relative movement of more than 60 km [62]. It produced a telescoped, ca 40 km thick,
section through the continental crust that is now exposed. The Woodroffe Thrust juxtaposes units
with distinctly different Musgravian metamorphism [78,94,95,97,98,103]: (i) the hanging wall
Fregon Subdomain that was thoroughly dehydrated under granulite facies conditions; and (ii) the
footwall Mulga Park Subdomain that only reached amphibolite facies conditions and contains
more hydrous minerals. This difference in the degree of devolatilization is clearly re ected in
the regional maps of thorium concentration determined by airborne gamma-ray surveys, with a
distinct jump in concentration across the Woodroffe Thrust from lower values in the hanging
wall to higher values in the footwall [63,93]. Except for the difference in Musgravian peak
metamorphism, the structural and magmatic histories in the two subdomains prior to their
juxtaposition are similar, which suggests that the two units represent different crustal levels of
the same terrane [78,100]. Wex et al. [93] used the thorium concentrations across the Woodroffe
Thrust to establish that the hanging-wall-derived mylonites generally represent less than 10% of
the entire width of the shear zone. In general, the thickness of the Woodroffe Thrust mylonites
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