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Abstract 
In this review we concentrate on a grounded approach to the modeling of cognition through 
the methodologies of cognitive agents and developmental robotics. This work will focus on 
the modeling of the evolutionary and developmental acquisition of linguistic capabilities 
based on the principles of symbol grounding. We review cognitive agent and developmental 
robotics models of the grounding of language to demonstrate their consistency with the 
empirical and theoretical evidence on language grounding and embodiment, and to reveal 
the benefits of such an approach in the design of linguistic capabilities in cognitive robotic 
agents. In particular, three different models will be discussed, where the complexity of the 
agent’s sensorimotor and cognitive system gradually increases: from a multi-agent 
simulation of language evolution, to a simulated robotic agent model for symbol grounding 
transfer, to a model of language comprehension in the humanoid robot iCub. The review 
also discusses the benefits of the use of humanoid robotic platform, and specifically of the 
open source iCub platform, for the study of embodied cognition. 

 

1. Introduction 
In this review we will concentrate on the proposal of a grounded approach to the modeling 
of cognition through the methodology of cognitive agents and developmental humanoid 
robotics. In particular, this work will focus on the modeling of the evolutionary and 
developmental acquisition of linguistic capabilities based on the principles of symbol 
grounding (Harnad 1990; Cangelosi & Harnad 2000). We propose a cognitive modeling 
approach to the grounding of language that is consistent with embodied cognition theory. 
The computational approach will first be framed within the growing empirical and theoretical 
literature on embodied cognition. This includes experimental psychology work on the 
grounding of language in perception and action, neuroscience and brain imaging studies on 
language embodiment and constructivist developmental psychology theories. We then 
review some examples of cognitive agent and developmental robotics models of the 
grounding of language to demonstrate the intrinsic link between language and cognition, 
and to reveal the benefits of such an approach in the design of linguistic capabilities in 
humanoid cognitive robots. These models provide a theoretical platform for the 
development of grounded language systems that overcome the known shortcoming of 
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symbolic-only theories of language and cognition (e.g. Fodor 1975; Burgess & Lund 1997; 
Landauer & Dumais 1997; Kirby & Hurford 2002). 

 

1.1 Empirical evidence on the grounding of cognition 
There is growing empirical and theoretical evidence on the embodied and grounded 
approach to cognition in natural and artificial cognitive systems. Recent advances in 
cognitive psychology, neuroscience, cognitive linguistics and developmental psychology 
support an embodied view of cognition, i.e. the fact that cognitive functions (e.g. perception, 
categorization, reasoning, and language in particular) are strictly intertwined with 
sensorimotor and emotional processes (Wilson 2002). This is particularly evident in 
numerous experimental psychology studies on the grounding of language, and other 
cognitive capabilities, in action and perception (Pecher & Zwann 2004).  

One of the main theories that explains how symbols are grounded in perception and mental 
simulations is the Perceptual Symbol Systems hypothesis (Barsalou, 1999). This 
hypothesis states that perceptual experience captures bottom-up patterns of activation in 
sensorimotor areas, through association in the brain processing sensory multi-modal 
information. At the same time, top-down mechanisms use association areas in the brain to 
partially reactivate sensorimotor areas to implement dynamic simulations of perceptual 
symbols. Mental simulators, based on distributed and interconnected brain areas, 
implement a basic conceptual system that supports categorization, produces categorical 
inferences, and supports productivity, propositions, and abstract concepts. In a similar 
theoretical line, Coventry and Garrod (2004) propose the on-line activation of situation-
specific models for tasks involving spatial cognition and spatial language judgments. For 
example, they have extensively studied the use of the locative prepositions such as “under” 
and “below” for describing a visual scene depicting a person holding an umbrella under 
pouring rain. Experimental and modeling evidence (e.g. Coventry et al. 2001; Cangelosi et 
al., 2005; Coventry et al. in press) has shown that the human participants’ evaluation of the 
scene (e.g. rating the relevance of specific spatial prepositions such as “The man is under 
the umbrella” or “The man is below the umbrella”) depends on a series of factors grounded 
on the participants’ previous experience, and on the input stimuli involved in the spatial 
cognition task. Psycholinguistic experiment results consistently demonstrate that 
participants prefer to use the preposition “under” to describe scenes in which the protective 
function of the umbrella is fulfilled (the person under the umbrella stays dry). When instead 
the umbrella fails to protect the person (who is wet because rain is coming from the side 
and wets its body), they prefer the use of the preposition “below”. Coventry and Garrod 
(2004) identify a combination of factors affecting the grounding of preposition in cognition 
and embodiment. These regard geometric knowledge (such as the relative orientation of an 
umbrella respect to the direction of the rain and to the position of the human being 
protected), object-specific knowledge (e.g. the prototypical rain protection function 
performed by an umbrella) and force dynamics factors (e.g. physics knowledge on the 
direction of the rain). 



PREPRINT - 37.Cangelosi A. (2010). Grounding language in action and perception: From cognitive agents to humanoid 
robots. Physics of Life Reviews, 7(2), 139-151 

The focus on the grounding of language into action and sensorimotor knowledge has been 
extensively studied by Glenberg and collaborators (Glenberg & Kaschak, 2002; Borghi et al. 
in press). Glenberg developed an embodied theory of cognition where meaning consists of 
the set of actions that are a function of the physical situation, of how our bodies work, and 
of our experiences. Glenberg investigated the Action-sentence Compatibility Effect. This 
consist in the fact that during sentence comprehension tasks, human participants are faster 
to judge the sensibility of sentences implying motion toward the body (e.g. “Courtney gave 
you the notebook”) when the response requires moving toward the body. Participants are 
then faster to respond to sentences implying movement away from the body (e.g. “Close 
the drawer”) when the response requires moving away from the body. This phenomenon is 
used to support the Indexical Hypothesis (Glenberg & Robertson, 2000). This suggests that 
when reading a sentence, the first process is to index words and phrases to objects in the 
environment, or to analogical perceptual symbols. The second process is to derive 
affordances from the object or its perceptual symbol. Finally, the third process is to mesh 
the affordances into a coherent set of actions. The mesh process is guided by the syntax of 
the sentence being processed, thus explaining the action-sentence compatibility effects. 

Cognitive psychology evidence is highly consistent with neuroscientific studies on action 
and language grounding and related brain mechanisms. One of the main neuroscientific 
hypotheses supporting grounding is the involvement of the mirror neuron system for action 
and language learning and evolution. Rizzolatti and Arbib (1998) argue for a role of the 
mirror neuron system in humans, and its precursor in monkey’s brain (area F5), to explain 
the origins of language. The mirror neurons match observed events to internally generated 
actions, thus forming a link between the observer and the actor. Rizzolatti and Arbib 
suggest that such an observation/execution matching system provides a necessary bridge 
from action to language. Gallese and Lakoff (2005) further use mirror neuron evidence to 
show that language makes direct use of the same brain structures used in perception and 
action. They hypothesize that brain structures in the sensorimotor regions are exploited to 
characterize abstract symbolic concepts that constitute the meanings of grammatical 
constructions and general inference patterns.  

Brain imaging studies also support the intrinsic link between action and language. For 
example, Cappa and Perani (2003) have reviewed literature on the neural processing of 
verbs and nouns. They found a general agreement on the fact that the left temporal 
neocortex plays a crucial role in lexical-semantic tasks related to the processing of nouns, 
whereas the processing of words related to actions (verbs) involves additional regions of 
the left dorsolateral prefrontal cortex. Pulvermuller and collaborators (Pulvermuller 1993; 
Hauk et al. 2004) consistently show that words activate cortical areas in a somatotopic 
fashion. For example, their brain imaging experiments show that action words referring to 
face, arm, or leg actions (e.g., “to lick”, “pick”, or “kick”) differentially activate areas along 
the motor areas directly adjacent to, or overlapped with, the cortical motor areas activated 
respectively by actual movement of the tongue, fingers, or feet. These observations support 
a dynamic view of language grounding, where words are processed by distributed neuronal 
assemblies, and these are based on cortical topographies that reflect word semantics. 
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Finally, in cognitive linguistics and developmental psychology, the link between the 
properties of language and their relationship with cognitive processes has been extensively 
supported. In linguistics, this link has been formalized in cognitive and constructivist 
linguistic theories (e.g. Talmy, 1980; Goldberg 2006). In developmental psychology, 
Tomasello (2003) has proposed a usage-based view of language, where linguistic 
development is intrinsically related to children's general social, cognitive, and symbolic 
development. As such, linguistics and grammatical abilities are gradually constructed by the 
child during development. For example, Tomasello’s Verb Island hypothesis (Tomasello 
1992) argues that the child’s earliest grammatical organization is verb-specific. Initially 
children use grammatical constructions centered on separated, individual verb items 
reflecting specific core meanings. Gradually, children acquire a general construct of verb 
through the merging of verb islands with similar meanings and syntactic constructs. This 
view is therefore consistent with embodied and grounded approaches where linguistic 
structure reflects action and perceptual experiences. 

 

1.2 The Grounding of Symbols in Cognitive Agents 
This growing empirical evidence on language grounding in action, perception and cognition 
is highly consistent with computational modeling approaches to language grounding in 
artificial cognitive agents and robots (Cangelosi et al. 2005; Cangelosi et al. 2008), as well 
as with other recent modeling approaches that focus on the strict integration of 
sensorimotor and cognitive capabilities (Perlovsky 2001, 2004, 2009; Feldman & 
Narayanan 2004; Steels 2003; Cangelosi et al. 2005). 

In the modeling approach presented here, cognitive agents, be they simulated agents or 
humanoid robots, learn symbols (words) that are directly grounded into the agents’ own 
categorical representations, whilst at the same time having logical (e.g. syntactic) 
relationships with other symbols. This view has some important implications. First, each 
symbol is directly grounded into internal sensorimotor categorical representations. These 
representations include perceptual categories (e.g. the concept of blue color, square shape, 
or female face), sensorimotor categories (e.g. the action concept of grasping, pushing, and 
carrying), social representations (e.g. individuals, groups and relationships) and other 
categorizations of the agent’s own internal states (e.g. emotions and motivations). These 
categories are connected to the external world through our perceptual, motor and cognitive 
interactions with the environment. Secondly, symbols also have logical (e.g. syntactic) 
relationships with the other symbols of the lexicons used for communication. This allows 
symbols to be combined, using compositional rules such as grammar, to form new 
meanings. For example, the combination of the two symbols “stripes” and “horse”, which 
are directly grounded into the agent’s own sensorimotor experience of striped objects and 
horses in its environment, produces the new concept (and word) “zebra”. This new symbol 
becomes indirectly grounded in the agents’ experience of the world through the process of 
“symbol grounding transfer” (Cangelosi & Riga 2006).  
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This approach satisfactorily addresses the main issues identified in the symbol ground 
grounding problem (Harnad 1990; Steels 2008; Cangelosi 2009). The symbol grounding 
problem, as initially stated by Harnad (1990), refers to the capability of natural and artificial 
cognitive agents to acquire an intrinsic (autonomous) link between internal symbolic 
representations and some referents in the external word or internal states. In addition, 
Harnad explicitly proposes a definition of a symbol that requires the existence of logical 
links (e.g. syntactic) between the symbols themselves. These symbolic links support the 
phenomena of productivity and generativity in language, and contribute to the grounding of 
abstract concepts and symbols (Barsalou 1999). Moreover, an important component of the 
symbol grounding problem is its social and cultural dimension, where social interactions 
contribute to the sharing of symbols (a.k.a. the external/social symbol grounding problem, 
as in Cangelosi 2006 and Vogt 1997). 

In addition to the focus on the grounding of the linguistic symbols in action and perception, 
the proposed approach shares the following cognitive modeling principles:  

(i) Embodiment and situatedness: Cognitive agents and robots act in their 
environment and develop their own cognitive capabilities through interaction 
with their physical and social world, mediated by the agent’s own 
sensorimotor structure. Agents acquire categorical representation of their 
environment (objects, events) and of their own interaction with the world 
(actions, internal states, motivations, emotions). These will then constitute the 
internal categorical representation upon which symbols are grounded.  

(ii) Evolutionary and developmental learning. Population of agents can acquire 
sensorimotor and cognitive capabilities as a result of the evolutionary 
adaptation to social and physical environments. During developmental 
learning, individual agents gradually acquire complex sensorimotor, cognitive 
and linguistic capabilities via dynamic brain-inspired learning processes, 
following qualitative developmental stages. The interaction between 
phylogenetic and ontogenetic learning can lead to bootstrapping mechanisms, 
such as in the case of the Baldwin effect (Munroe & Cangelosi, 2003).  

(iii) Bottom-up cognitive bootstrapping: The individual capabilities of the agent’s 
cognitive system closely interact during development and their complex 
interaction leads to the emergence and bootstrapping of higher-order 
cognitive capabilities. 

(iv) Bio-inspired agent design: The design of the agent’s control system and 
behavioral capabilities is constrained, and directly inspired, by 
psychologically-plausible cognitive development processes and by 
neuroscientific investigations of behavior control in humans and animals.  

The modeling approach to grounding presented here is not the only computational and 
robotic approach to grounding that has been proposed in the literature (see reviews in 
Cangelosi & Parisi 2002; Lyon et al. 2005). For example, Steels (1999; 2005) has proposed 
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various robotic models of the emergence of communication based on the languages games 
for the Talking Heads experiments and the AIBO and QRIO robots. In Steels’s approach 
relevance is given to the social aspects of the symbol grounding, as well as the perceptual 
grounding of categories (Steels & Belpaeme, 2005). Vogt (2002) has put forward a similar 
approach applied to both robots and simulated scenarios. Fontanari and Perlovsky (2007) 
use language games to study evolution of compositional lexicons. Moreover, the literature 
on computational modeling of language evolution includes numerous works on multi-agent 
that do not directly follow a grounded approach, i.e. where the semantic repertoire of the 
agent is pre-defined by the researcher and based on explicit symbolic representation (e.g. 
Kirby & Hurford 2002; Brighton et al. 2005).  

The distinctiveness of the grounding approach presented here, in comparison with other 
approaches, is that categorical representation (meanings) emerge as a results of a 
sensorimotor task that the agents perform to survive in the environment or to imitate a 
teacher. As the agent’s control architecture is always based on an artificial neural network, 
the meanings consist of distributed internal representation, as with hidden unit activation 
patterns. The agent’s neural network is designed to integrate all sensorimotor, cognitive 
and linguistic capabilities into one cognitive architecture, and to ground language 
comprehension and language production into internal categorical representations 
(Cangelosi 2005). The typical neural architecture used in these models (Figure 1) has two 
sets of inputs, namely vision/perceptual units and linguistic/speech units. In output there is 
a set of units to control the agent’s motor behavior, and a set of units to produce linguistic 
utterances. The input and output units are integrated in at least one layer of hidden units. 
These units, and the connections to/from the hidden layer, allow the grounding of symbols 
into distributed categorical representations. The organization of the internal units, and the 
patter of connections from/to these hidden layers, can follow different modular 
architectures. For example, in evolutionary models on the learning of nouns and verbs, 
different modular architectures can be designed taking inspiration from the brain 
organization (Cangelosi & Parisi 2004).  

With this neural network approach to language grounding, there is no need to postulate the 
existence of explicit syntactic rules or syntactic roles in the agent’s control architecture. 
Connectionist neural network architectures are known to be able to learn to process 
syntactic and recursive structures, where syntactic and semantic structures can emerge 
from the input training stimuli (Elman, 1990). In the agent grounding method, when agents 
learn to use compositional lexicons, as in the evolutionary model of proto-nouns and proto-
verbs (Cangelosi 2001; Cangelosi & Parisi 2004), the symbol composition capabilities 
implicitly reside in the network’s processing capability, in a distributed manner based on 
connection weights and activation states. 

 

 

< Figure 1 here > 
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In the remaining part of the paper we review some of our recent models of the grounding of 
language in cognitive agent and developmental robotics to provide detailed example of the 
proposed approach and to demonstrate its consistency with the above empirical and 
theoretical evidence. In particular, three different models will be discussed where the 
complexity of the agent’s sensorimotor and cognitive system gradually increases: (i) a multi-
agent simulation of language evolution, (ii) a simulated robotic agent model for symbol 
grounding transfer, (iii) a model of language comprehension in the humanoid robot iCub.  

2. Multi-Agent Modeling of Grounding and Language Evolution 
The first modeling approach on which we will concentrate is based on simulated multi-agent 
systems. The model implies a population of agents who interact with each other, and 
develop sensorimotor and cognitive capabilities through a combination of evolutionary and 
developmental learning. Agents are modeled as simple simulated organisms which perform 
foraging tasks (e.g. in a mushroom world metaphor) and communicate with other agents 
about their interaction with the world (e.g. location of food, their perceptual features, and 
actions to act on the world). The agents do not possess a realistic representation of their 
body, as in the humanoid agents and robots described in the next sections, but only have 
perceptual visual input and motor units controlling simple actuators to navigate the world 
and perform simple actions on the objects. Even with this simple embodiment system, 
agents are able to ground communication signals into their own sensorimotor 
representations of the world and their interaction with it. 

Various multi-agent simulations of the evolution of language based on this modeling 
framework have been developed. In some models, the focus has been on the emergence of 
a shared lexicon using only evolutionary learning methods (Cangelosi & Parisi 2008) or a 
combination of evolutionary and ontogenetic learning (Cangelosi 2001; Cangelosi & Harnad 
2000; Munroe & Cangelosi 2003). Given the focus of this review on the grounding 
approach, we describe here in detail one of these evolutionary models on the Symbolic 
Theft Hypothesis of language origins (Cangelosi and Harnad 2000). This hypothesis 
considers two competing ways of category learning: (i) by “sensorimotor toil”, when new 
categories are acquired through slow trial and error and feedback experience with the 
environment; (ii) by “symbolic theft”, when new categories are acquired quickly through 
hearsay from linguistic descriptions provided by language-speaking adults. The significant 
adaptive advantage of symbolic theft has been hypothesized to produce an adaptive benefit 
for language and can help explaining the origins of language (Harnad, 1996). Cangelosi 
and Harnad (2000) developed a computational model based on an evolutionary foraging 
task using a mushroom world scenario (Cangelosi & Parisi 1998). The agents’ survival 
depends on learning the differences between two categories of foods: mushrooms with 
visual feature A are to be eaten; mushrooms with feature B are to have their location 
marked, and mushrooms with joint features A and B are to be eaten, marked and returned 
to. Mushrooms also have other irrelevant features (C, D and E) that the foragers must learn 
to ignore. When organisms approach a mushroom, they emit a call associated with their 
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functionality (“EAT”, “MARK”). Both the correct action pattern (eat, mark) and the correct 
call (“EAT”, “MARK”) are learned during the foragers’ lifetime through supervised learning 
(sensorimotor toil). Under some conditions, the foragers also receive the call of another 
forager as input. This will be used to simulate theft learning of the return behavior.  

The behavior of an agent is controlled by an artificial neural network, with a structure similar 
to that of figure 1. This includes input units encoding the visual features A-E and the 
linguistic/symbolic descriptions proposed by other agents. The output units encode the 
agent’s sensorimotor behavior (move to approach mushrooms, and eat/mark actions) and 
its linguistics productions. The population of foragers is also subject to selection and 
reproduction through a genetic algorithm, where the fitness reflects the number of 
mushrooms correctly eaten. The genotype of each agent consists on the connections 
weight of its neural network controller. 

To test the adaptive advantage of symbolic theft versus sensorimotor toil, the foragers’ 
behavior for the two learning conditions is compared. In one simulation the two strategies 
are compared in direct competition. In the first generations, all organisms learn through 
sensorimotor toil to eat mushrooms with feature A and to mark mushrooms with feature B. 
They also learn the names of the basic categories. The return behavior and its name are 
not yet taught. After the agents evolve this behavior, the agents are divided into two groups 
of toilers and thieves. Toil foragers learn to return to AB mushrooms through honest but 
slow toil. In contrast, Theft foragers learn to return by hearing the vocalization from the 
other agents (e.g. “EAT” + “MARK” = “RETURN”). Results show that thieves successfully 
return to more AB mushrooms than Toilers. This means that learning to return from the 
grounded names “EAT” and “MARK” is more adaptive than learning it through direct toil 
based on sampling the physical features of the mushrooms. This result is also confirmed 
when thieves and toiler are in direct competition against one another at the time of the 
selection. Thieves consistently outnumber toilers in all tests. These results support the 
original hypothesis that a symbolic theft learning strategy, based on language hearsay, is 
much more adaptive that a sensorimotor toil strategy. This adaptive advantage could have 
constituted the basis for the origin of language and its adaptive advantage.  

3. Symbol Grounding Transfer in Simulated Robotic Agents 
The second approach focuses on action and language learning in cognitive agents, where 
simulated robotic agents can autonomously evolve grasping and object manipulation skills 
(Massera, Cangelosi & Nolfi, 2007) and learn to use name of actions to acquire higher-
order sensorimotor categories (Cangelosi & Riga, 2006; Cangelosi et al. 2007). This model 
is a direct follow-up of the previous model, as it focuses on the theft acquisition of 
categories and their names. In particular, its aim is to study the mechanisms for the transfer 
of the grounding from the basic categories, directly grounded through a sensorimotor toil 
strategy, to higher-order compositional categories, acquired only via theft language 
description.  
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The model differs from the evolutionary multi-agent system of Cangelosi and Harnad (2000) 
mainly because it is based on a two-agent scenario (teacher and learner) and it models the 
ontogenetic learning of language, rather than evolutionary learning. In addition, one 
important difference is that this new model is based on a richer implementation of the 
organism’s embodiment system and sensorimotor knowledge. Instead of simulating a 
foraging task in a two-dimensional environment, this new approach is based on the 
simulation of a 3D robot manipulating objects with its arms and fully embodied in a physics 
simulation environment. This system is implemented using ODE (Open Dynamics Engine, 
www.ode.org), a high performance library for simulating rigid body dynamics. This permits a 
richer investigation of the robotic agent embodied system, such as with the simulation of 
continuous joints activation, and subject to the principle of physics of object collision 
dynamics.  

The model consists of two simulated robotic agents (teacher and learner) embedded within 
a virtual simulated environment (Fig. 2). The body configuration is loosely inspired by a 
humanoid robot, though with simplified arms and no legs. Each robot consists of two 3-
segment arms attached to a torso, with 6 degrees of freedom. The torso is connected to a 
base with four wheels. Through the two arms, the robot can interact with the environment 
and manipulate objects placed in front of it. Three objects were used in the current 
simulation: a cube, a flat cuboid horizontally orientated, and a vertical bar. The agent 
receives in the visual input different retina views of each object and has to learn six basic 
actions: to lower right shoulder, to lower left shoulder, to close right upperarm, to close left 
upperarm, to close right elbow, and to close left elbow. They will also learn a name for each 
of these basic actions. The robot had to learn to systematically associate an action with 
some of the above objects. For example, the close_left and close_right shoulder actions are 
associated with different views of the cube. 

 

< Figure 2 here > 

 

The first agent, the teacher, is pre-programmed to demonstrate a variety of basic actions, 
each associated with a linguistic signal. These are demonstrated to the second robot, the 
learner, which will learn to reproduce the actions by imitation and name them. First the 
agent acquires basic actions by observing the teacher, and then it learns the basic action 
names. This is the “direct grounding” strategy, as in the sensorimotor toil strategy. 
Subsequently, the agent autonomously uses the linguistic symbols that were grounded in 
the previous learning stage to acquire new higher-order actions. This is the “symbol 
grounding transfer”, corresponding to the symbolic theft strategy.  

The robot is controlled by a neural network, as in the neural network architecture described 
above (Figure 1). The robot’s neural network is trained though the error backpropagation 
algorithm. The agent undergoes 3 stages of training: (1) Basic action learning, (2) Entry-
level naming through direct grounding, and (3) Higher-order learning through grounding 
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transfer. For basic action learning, the agent learns to imitate all six basic actions in 
association in response to the presentation of the different objects. No linguistic labels are 
used at this stage. In the Entry-level naming of basic grounding, the agent learns to 
associate the previously acquired behaviors to linguistic signals. This process consists of 
three sequential activation cycles. The first cycle (Linguistic Production), the learner is 
trained to use the names of the 6 basic actions. In the second Entry Level cycle (Linguistic 
Comprehension), the learner is taught to respond to the input of the name of the action, 
without having the ability to perceive the object associated to the action. In the final Entry-
level cycle (Imitation), both motor and linguistic inputs were activated in input, and the 
network learns to reproduce the action in output and activate the corresponding output 
linguistic unit. This third cycle is necessary to permit the linking of the production and the 
comprehension tasks in the hidden units activation pattern (Cangelosi et al. 2000). 

The final training stage, Higher-level learning, allows the learner to autonomously acquire 
higher-order compositional actions without the need of a visual demonstration from the 
teacher. This is achieved only through a neural computational model of the “mental 
simulation” strategy similar to Barsalou’s (1999) perceptual symbol system hypothesis. The 
teacher only has to provide new linguistic instructions consisting of the names of two basic 
actions and the name of a new higher-order action. For example, a sentence consists of 
“grab [is] close_left_arm [and] close_right_arm”. The learner goes through four higher order 
learning cycles. First it activates only the input unit of the first basic action name to produce 
and memorize the corresponding sequence. Second, it activates in input the linguistic units 
for the first basic action name and the new higher-order action. The resulting output motor 
activations are compared with the previously stored values to calculate the error and apply 
the backpropagation weight corrections. The next two cycles are the same as the first two, 
except that the second basic action name unit is activated as well.  

To establish if the agent has learned correctly the new high-order actions and transferred 
the grounding from the basic action names to the new higher order names, a grounding 
transfer test is performed. This test aims to evaluate the capability of the learner agent to 
perform a new compositional action with any of the objects previously associated, in the 
absence of the linguistic descriptions of the basic actions. Thus the agent is requested to 
respond solely on the signal of the composite action (e.g. “Grab”) with specific views of the 
objects. 

Analyses of the simulation results indicate that all agents were able to learn successfully 
the 6 basic actions and the 3 higher-order behaviors. At the end of the stage, the learner 
was able to execute all actions flawlessly, when presented with an object. In the grounding 
transfer test, the agent correctly reproduced the higher-order compositional action. This test 
demonstrates the capacity of the agent to transfer autonomously the grounding form the 
basic actions to new actions never seen during the demonstration cycles.  

To understand the neural network mechanism that permit the higher-order symbol 
grounding transfer, we have analyzed the contribution of the hidden unit activations and the 
combination of input/output patterns during the various learning stages. These analyses 
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were first carried out in a simulation of grounding transfer for perceptual categories (e.g. 
“zebra” higher order category as a result of the combination of the grounded names of 
“stripes” and “horses”) (see Cangelosi et al. 2001). What these analyses tell us is that the 
transfer of grounding from the low level categories to the higher level ones is mediated by 
the hidden representations. These representations divide the network's semantic space into 
different regions, due to categorical representation effects. The regions tend to have high 
inter-categorical distances. The effect of training during entry-level learning is that of 
creating links between well differentiated categorical representations and discrete symbols. 
When these symbols are combined together, they also inherit their links to low level 
categorical representations. 

This model has further been extended to scale the number of actions and words that the 
agents learn. The issue of scaling up and combinatorial complexity in cognitive systems has 
been recently addressed by Perlovsky (2001). In linguistic systems, combinatorial 
complexity refers to the hierarchical combinations of bottom-up perceptual and linguistic 
signals and top-down internal concept-models of objects, scenes and other complex 
meanings. Perlovsky has proposed the neural Modeling Field Theory (also known as 
Dynamic Logic) as a new method for overcoming the exponential growth of combinatorial 
complexity in the computational intelligent techniques traditionally used in cognitive systems 
design. Modeling Field Theory is based on the  principle of associating lower-level signals 
(e.g., inputs, bottom-up signals) with higher-level concept-models (e.g. internal 
representations, categories/concepts, top-down signals) avoiding the combinatorial 
complexity inherent to such a task. This is achieved by using measures of similarity 
between concept-models and input signals together with a new type of logic, so-called 
dynamic logic. MFT may be viewed as an unsupervised learning algorithm whereby a 
series of concept-models adapt to the features of the input stimuli via gradual adjustment 
dependent on the fuzzy similarity measures. 

Perlovsky (2004) has suggested the use of Modeling Field Theory specifically to model 
linguistic abilities. By using concept-models with multiple sensorimotor modalities, a 
Modeling Field Theory system can integrate language-specific signals with other internal 
cognitive representations. To test this hypothesis, the above agent scenario was extended 
to a repertoire of 112 actions (Cangelosi et al. 2007; Tikhanoff 2009). The learner robot 
uses MFT to learn to reproduce those actions as well as to learn the actions names. These 
actions are inspired by the semaphore flag signaling alphabet. For the encoding of the 
actions, we collected data on the posture of the teacher robots using 6 features, i.e. 3 pairs 
of angles for the two joints of the shoulder, upper arm and elbow joints. In this simulation, 
objects are not present. When performing the action, the teacher agent can emit a three-
letter word labeling the action (using 6 phonetic features). The learning of actions and their 
words is based on the Modeling Field Theory algorithm (see Cangelosi et al. 2007 for 
details on the algorithm parameters).  The simulation lasts for 25000 training steps. In the 
first 12500 cycles, only the 6 action features (joint angles) are provided and the agent is 
capable to learn to reproduce all actions. In the second part of the training, all 12 feature 
sets (6 for actions/angles, 6 for phonetic sounds) are considered when computing the MFT 
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fuzzy similarity functions. Results demonstrate that the robot is able to categorize 95% of 
actions and learn their unique labels, thus supporting the use of Modeling Field Theory to 
scale up the action and lexicon repertoire. 

4. Language Comprehension in the Humanoid Robot iCub 
In this section we briefly introduced a more recent model of symbol grounding and 
language learning based on developmental (epigenetic) robotics (Lungarella et al. 2003; 
Weng et al. 2001). One major innovation, in comparison with previous approach, is the use 
of a realistic model of the iCub humanoid robot, a new robotic platform for cognitive 
modeling research. Secondly, we implement a scaled up version of the lexicon acquired by 
the agent, where the robot is trained to acquire a grounded lexicon to understand object 
manipulation instructions such as “grasp blue cube” or “put red sphere in container” 
(Tikhanoff 2008; Tikhanoff et al., submitted). 

The iCub robot is an open-source humanoid robot platform designed to facilitate 
developmental robotics research (Metta et al. 2008; robotcub.org). The robot is 1.05 meter 
tall, and weighs approximately 20.5 kilograms (Figure 3 left). The robot has 53 degrees of 
freedom (DoF). In particular, for what regards manipulation tasks, it has 7 DoF for each of 
the two arms and 9 DoF for each of the two hands. A computer simulation model of the 
iCub has also been developed (Figure 3 right). The simulated iCub (Tikhanoff et al. 2008) 
has been designed to reproduce, as accurately as possible, the physics and the dynamics 
of the physical iCub. It consists of multiple rigid bodies connected via joints. The body parts 
were designed following the open-source robot specifications. It has the same number of 
DoF (53) of the real robot. In addition, the environment parameters on gravity, objects’ 
mass, friction and joints are based on known environment conditions. 

 

< Figure 3 here > 

 

The language learning model with the simulated iCub was based on a modular architecture 
that controls the various cognitive and sensorimotor capabilities of the iCub and integrates 
them to ground symbols into the agent’s own cognitive system. This consists of two neural 
network controllers respectively for the reaching of objects in the peripersonal space of the 
robot and for the grasping of objects with one hand. Visual and speech input processing 
was based on standard vision algorithms and speech recognition systems. For full details 
on the motor, vision and speech processing modules (see Tikhanoff 2008; Tikhanoff, 
Cangelosi & Metta, submitted). Here we will focus on the central module that integrates the 
various processing capabilities to respond to linguistic instructions. The cognitive integration 
module was based on a goal selection neural network. This is an architecture similar to the 
general feedforward network shown in Figure 1, though in this first model only the language 
comprehension pathway was implemented. The input to the network consists of seven 
visual features encoding object size and location, and language input units for the speech 
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signals. The output layer has four units respectively selecting the four actions: idle, reach, 
grasp, and drop. The active output action unit would then activate the reaching and 
grasping module, trained separately. The hidden layer has fifteen units. During the training 
phase, the robot is shown an object along with a speech signal. Examples of sentences for 
handling a blue object are: “Blue_ball”, “Reach blue_ball”, “Grasp blue_ball”, “Drop 
blue_ball into basket” 

The Goal Selection feed-forward neural network was trained with the above setup using the 
error backpropagation algorithm. After 5000 training cycles, the network reaches a 
satisfactory learning error. To test the final language comprehension capabilities, an 
individual object was first put in front of the robot, such as a blue cube. The robot stays in 
idle position until a speech signal is presented in input. This activated the goal selection 
network that selected the appropriate motor sequence response. For example, if the 
linguistic instruction was “grasp blue_ball”, the reaching and grasping modules are 
activated appropriately. The iCub first centers the head on the object, to calculate the three 
dimensional coordinates of the hand and of the position of the object through binocular 
disparity comparison. It then initiates the reaching action, and subsequently the object is 
grasped. 

This model provides an implementation of the symbol grounded model of language 
comprehension in the iCub robot. Work is on going to implement the various modules to the 
physical iCub platform. Although this requires the retraining of some of the modules with 
new data from the physical robot, some of the training achieved in simulation is utilized in 
the real robot. For example, the training in simulation of the neural network for reaching 
permits the sampling of a greater number of positions, thus increasing the generalization 
and robustness capabilities of the neural controller. In addition, another grasping model 
(Macura et al. 2009) has recently been developed to train the iCub to grasp object of 
different sizes and learn to responds selectively to different object microaffordances, such 
as a power grasp for large objects (apples, tennis ball) and a precision grip for smaller 
objects (cherry, marble). 

5. Conclusions 
 

The cognitive modeling approach presented here provides an important methodology for 
investigating the processes and mechanisms supporting the grounding of language into 
sensorimotor experience, during evolution and ontogenetic development. Current models 
put great emphasis on the direct grounding of symbols into internal categorical 
representations, i.e. when grounded symbols are acquired by the agents through embodied 
interactions with the environment. However, with this modeling approach we do not invoke 
a cognitive system in which all symbols have to be directly grounded into perceptual and 
sensorimotor toil interactions with the environment. Rather, we argue that only the initial 
lexicon developed by language-speaking agents must be acquired through direct 
grounding. Once the agent develops a core lexicon that allows it to represent their 
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fundamental sensorimotor properties of the world, they can expand their own lexicon 
through the process of language productivity and symbol grounding transfer, as in the 
symbolic theft strategy demonstrated in Section 3. In addition, the integration of the 
grounded approach to language learning with current developmental robotics models on 
cognitive and sensorimotor development (e.g. robotics models of motivation and curiosity, 
and of theory of mind – e.g. see review in Lungarella et al. 2003) permits the design of 
complex cognitive skills in interactive robots.  

The directly grounded basic lexicon has been called the “grounding kernel” (Harnad 2009), 
i.e. the essential set of words that cannot be defined by linguistic combinations 
(descriptions) of other words in the dictionary. Therefore, the grounding kerned must come 
from direct grounding during early stages of language development. Harnad and 
collaborators (Blondin-‐Massé et al. 2008; Chicoisne et al. 2008) have recently carried out 
linguistic corpora analyses on the Longman’s Dictionary of Contemporary English and 
Cambridge International Dictionary of English to identify the grounding kernel of English. 
They analyzed the concreteness, imagery and age of acquisition factors in their grounding 
kernel words and predicted that the grounding kernel would be more concrete and 
imaginable, and was acquired earlier than the rest of the vocabulary. Analyses support the 
hypothesis that dictionary meanings are grounded in a mental lexicon that is in turn 
grounded in prior sensorimotor learning.  

The use of the grounded agent methodology discussed here, in parallel with computational 
linguistic analyses and other developmental robotics approaches (Weng et al. 2002), can 
help investigating both the evolutionary and ontogenetic factors affecting the acquisition of 
the grounding kernel, and its relationship to embodiment factors. For example, one of the 
open issues in language grounding research regards the scaling up of the agent’s lexicon 
from few tens of words, as in current models, to lexica with hundreds of words and with 
complex syntactic constructs. The increase of the agents’ lexicon also permits the 
investigation of the transition from holistic communication systems to compositional 
languages where words belong to different syntactic categories. Grounding models can 
shed light both on evolutionary phenomena, as well as developmental mechanisms leading 
to the emergence of syntactic languages and the interaction of phylogenetic and 
ontogenetic mechanisms as in the Baldwin effect (Munroe & Cangelosi 2003). Finally, 
another challenge in language modeling research regards the investigation of the grounding 
of abstract words. Computational models can shed light on the specific sensorimotor and 
cognitive mechanisms leading to the abstract concepts, such as “beauty”, as well as the 
grounding of function words such as “and”, “not”, “for” (Nehaniv et al. 2007).  

This computational modeling approach has the potential of being applied to various types of 
cognitive agent models and task scenarios. Work reviewed in previous sections varied from 
foraging tasks in evolutionary multi-agent systems to action learning scenarios in more 
realistic agent embodiments, up to an application to the realistic simulation model of the 
humanoid robot iCub. Most of the models are based on computer simulation of increasing 
complexity, though the iCub simulation experiments are currently being extended to the 
physical platform (Tikhanoff et al. submitted). Computer simulations play an important role 
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in cognitive modeling research (Ziemke 2003; Tikhanoff et al. 2008). Despite the fact that 
the use of a simulation might not provide a faithful model of the complexity present in the 
real environment, thus not always guaranteeing a fully reliable transferability of the agent’s 
controller from the simulation environment to the real one, robotic agent simulations are of 
great interest for cognitive scientists for various reasons. For example, one of the main 
benefits is the fact that the simulation of embodied agents permits the investigation of 
several types of embodiment configurations (e.g. with varying sensors and actuators 
setups) without requiring the availability and manipulation of physical artifacts. Simulators 
also allow researchers to experiment with robots with varying morphological characteristics 
(Bongard & Pfeifer 2002). This advantage, in turn, permits the discovery of properties of the 
behavior of an agent that emerges from the interaction between the robot’s controller, its 
body and the environment (Nolfi & Floreano 2002). Moreover, the iCub simulator has the 
additional advantage of being open source, and as such allows researchers from a variety 
of labs to share the same benchmarking cognitive agent platform, without the need to own 
expensive robot platform.  

In addition to contributing to cognitive modeling research, the agent methodology described 
here can also have significant impact on cognitive systems technology and robots design, 
such as in service robotics and human-robot interaction. For example, in service robotics, 
future systems will be able to learn language and world understanding from humans, and 
also to interact with them for entertainment purposes (e.g. Tikhanoff & Miranda, 2005; 
Steels & Kaplan 2000).  A bio-inspired robotic approach, based on the grounding of 
language and its direct integration with action knowledge, can help overcome current 
limitations of robot design. In Cangelosi et al. (under review) a roadmap for future research 
on action and language integration based on a developmental cognitive robotics approach 
is proposed. This identifies the key research challenges and milestones for action learning, 
language development and social interaction in cognitive robots. 
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Figure 1. Dual-route architecture for agent’s neural network 
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Figure 2: Experiment with simulated robot. Teacher (left) and learner (right) agents. 
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Figure 3: The iCub humanoid robot (left) and it simulation model (right) 

 

 

 

 


