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Deep learning detection of aneurysm clips for

magnetic resonance imaging safety

Abstract

Flagging the presence of metal devices before a head MRI scan is essential to
allow appropriate safety checks. There is an unmet need for an automated system
which can flag aneurysm clips prior to MRI appointments. We assess the accu-
racy with which a machine learning model can classify the presence or absence
of an aneurysm clip on CT images. A total of 280 CT head scans were col-
lected, 140 with aneurysm clips visible and 140 without. The data were used to
retrain a pre-trained image classification neural network to classify CT localizer
images. Models were developed using five-fold cross-validation and then tested
on a holdout test set. A mean sensitivity of 100% and a mean accuracy of 82%
were achieved. Predictions were explained using SHapley Additive exPlanations
(SHAP), which highlighted that appropriate regions of interest were informing
the models. Models were also trained from scratch to classify three-dimensional
CT head scans. These did not exceed the sensitivity of the localizer models. This
work illustrates an application of computer vision image classification to enhance
current processes and improve patient safety.

Keywords: Aneurysm clips, artificial intelligence, CT, deep learning, MRI, patient
safety

1 Introduction

Screening of patients for aneurysm clips and other metallic devices prior to magnetic
resonance imaging (MRI) is vital to ensure that the patient and device can be scanned
safely. There have been numerous makes and designs of aneurysm clip over decades
[1], many of which have been categorized as MRI safe. For these particular implants,
MRI is not absolutely contraindicated, but the devices need careful prior assessment
to ensure that the scan takes place under manufacturer-specified conditions. However,
not all historic clips are MRI safe, and even those that are safe in some conditions
may not be safe in all conditions [2]. At least one fatality has been caused by the
displacement of an aneurysm clip [3]. Safe examination requires review of medical
records and co-ordination of multiple experts [4]. Late detection has the potential to
result in last minute cancellations and wasted scanner time. Failure to perform the
required checks can result in device dysfunction with potential harm to the patient.
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MRI is the standard imaging modality for many conditions. Appropriate screening
policies and procedures are essential before permitting entry to the MRI scanner to
prevent injury [5]. Best practice is to use referrer and patient questionnaires to identify
patients with devices or other issues that need further investigation. Questionnaires
are not fail-safe as referrer responses can be unreliable and patient responses are often
not available until the day of the scan.

In the last decade, there have been significant advances in AI-based medical image
classification due to increased compute power, the open-sourcing of large labelled
datasets, and the development of deep learning [6]. Deep learning describes the sub-
set of machine learning which uses layered neural networks to build representations
of complicated concepts out of simpler concepts [7]. This negates the need for fea-
ture extraction, as required by other methods, and streamlines the preprocessing
pipeline [8]. The success of deep learning methods in image classification tasks is well-
documented, and for the last decade they have exceeded the performance of many other
state-of-the-art classification algorithms [9]. There are now thousands of publications
applying deep learning techniques to medical imaging [10].

We describe the design of a deep learning model for the detection of the presence
of aneurysm clips in computerized tomography (CT) head scans. The vast majority
of patients with aneurysm clips will have had CT head imaging previously performed
as part of their treatment, presenting the potential to screen these previous scans as
part of an automatic pre-MRI safety check. This would improve MRI safety, reduce
last-minute cancellations, and save time and resources.

2 Materials and Methods

Ethical approval was granted on 15 October 2019 by HRA and Health and Care
Research Wales. Data were obtained from Derriford Hospital, a large teaching hospital
with a regional neurosurgery centre serving the South West of the United Kingdom.
The study design was retrospective and observational using pre-existing medical image
data.

2.1 Subject Inclusion

A database of patients with aneurysm clips was used to identify cases for inclusion in
the study. A list of all patients undergoing aneurysm clip surgery was identified from
surgical records. The radiology information system (RIS) (Cris, Wellbeing Software)
was used to identify all post-surgical CT head examinations for these patients. A
custom SQL query was then used to search the RIS for matched controls. For each scan
with an aneurysm clip present, a scan with no aneurysm clip present was identified.
These control scans were matched according to:

• scan type

• age at time of scan, within a window of ± six months

• scan date, within a window of ± 12 months

• gender
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2.2 Image Data Acquisition

Images for the investigations identified on the RIS were downloaded from PACS using
dcmtk (OFFIS e.V.) [11]. These studies were anonymised using custom anonymisation
software based on the Clinical Trials Processor (RSNA MIRC project) [12].

2.3 Ground Truth Confirmation

Manual review of images was performed by two board-certified radiologists to ensure
correct labelling. In the event of any disagreement of the correct labels, a third board-
certified radiologist reviewed the case to confirm the correct labelling.

2.4 Split

Two sets of images were extracted from the fully curated dataset: a set of localizers
and a set of full CT heads. Most CT scan studies begin with one or more localizer
scans. These are of poorer quality than full CT scans, but aneurysm clips can often
still be clearly seen (Fig. 1). Localizer scans acquired in the same plane were identified
automatically using the DICOM tags. From the fully curated dataset, 274 scans were
identified which contained saggital localizers: 136 with aneurysm clips and 134 without.
These localizers were randomly divided at a scan level: 28 scans (10%) were reserved
as a holdout test set (10 with aneurysm clips and 18 without). The remaining 246
(90%) were used for model development (126 with aneurysm clips and 120 without).

Fig. 1: Sagittal localizer with aneurysm clip present, circled

To standardise the full CT head dataset, scans reconstructed using the same kernel
were identified automatically using the DICOM tags. From the fully curated dataset,
214 scans were identified which had been reconstructed using a bone kernel: 104 with
aneurysm clips and 110 without. These were randomly divided at a scan level: 22 scans
(10%) were reserved as a holdout test set (11 with aneurysm clips and 11 without).
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The remaining 192 (90%) were used for model development (93 with aneurysm clips
and 99 without).

For both localizers and full CT heads, five-fold cross-validation was used to develop
and assess models, with the data divided into 80% training data and 20% validation
data in each fold.

For both types of image, the five developed models were then finally tested on the
holdout test set.

2.5 Image Preprocessing

The images were preprocessed before model input by a deterministic automatic
pipeline developed in Python using tools from OpenCV [13], SciPy [14] and scikit-
image [15]. For the two-dimensional localizer scans, black borders were removed. Pixel
values were rescaled between zero and one. Images were cropped to contain the head
only, and the bottom of the images removed to exclude the mandible. This optimisa-
tion was included after the explainability technique revealed that models were being
confounded by the presence of fillings, resulting in false positive results. Images were
resized to 400x400 pixels.

For the three-dimensional scans, the Hounsfield values were clipped with a level of
2000 and a window of 500 to optimize the visibility of metal. Voxel values were scaled
between zero and one. Images were cropped to contain the head only and resized to
256x256x40 voxels.

2.6 Neural Network Architecture

Python-based deep neural networks were built with Keras [16] using the TensorFlow
backend [17]. Graphics processing unit hardware acceleration on an NVIDIA GeForce
RTX 3080 was used for neural network training. Jupyter Lab [18] was used for model
development to enable iterative improvements to be made efficiently.
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(a) MobileNet V2 for localizers

(b) 3D-CNN for full CT heads

Fig. 2: Network architectures

For the classification of the two-dimensional localizer images, a convolutional
neural network based on a pre-trained model was selected as a proven choice for
computer vision and image classification tasks using transfer learning [10]. Several
well-established pre-trained base networks were trialled, including VGG16 [19], Incep-
tion V3 [20], Xception [21], DenseNet [22] and MobileNet V2 [23]. Following analysis
for each model, MobileNet V2 achieved the greatest performance and was chosen for
the final models (Fig. 2a).

For the classification of the three-dimensional CT images, a three-dimensional
convolutional neural network was trained from scratch, due to a lack of available
pre-trained three-dimensional classification networks [24]. Several different hyperpa-
rameter configurations were trialled. Following curve analysis for each iteration, the
one which achieved the smallest loss on the validation data was chosen for the final
models (Fig. 2b).
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2.7 Model Training

The models were trained for a maximum of 100 epochs using stochastic gradient
descent with the Adam optimization algorithm (learning rate 0.001) [25]. The binary
cross-entropy loss function was utilized. The batch size was 64. The images were
augmented with a 50% probability of horizontal flip. Other augmentation methods
were trialled, but did not result in any further increase in performance. The mod-
els achieving the lowest loss on the validation sets during training were saved using
checkpoints.

A classification threshold was then chosen for the models which maximized
sensitivity, and therefore minimized the prevalence of false negatives.

2.8 Explainability

SHapley Additive exPlanations (SHAP) were used to explain the 2D models’ pre-
dictions. SHAP uses the game theory concept of Shapley values to calculate the
contribution of a factor to a machine learning model output [26]. In this case,
DeepSHAP was used to calculate and visualize the contribution of individual pixels
to the deep learning model’s prediction.

3 Results

3.1 Localizer Images

Of the pre-trained base models trialled for the localizer images, MobileNet V2 achieved
the greatest mean test Receiver Operating Characteristic (ROC) area under the curve
(AUC) and was chosen for the final models. Other base model results are reported in
Table 1.

Table 1: Performance of different base models for localizer images

Base model Mean ROC AUC Parameters Inference time (ms) GFLOPS

VGG16 0.84 15,767,361 24.9 97.9
Inception V3 0.95 26,001,185 27.4 21.0
XCeption 0.98 25,059,881 25.5 29.4
DenseNet 0.98 22,258,241 30.7 27.4
MobileNet V2 0.99 4,883,521 26.2 2.0

A classification threshold of 0.16 was chosen to maximize sensitivity whilst main-
taining a high accuracy and specificity (Fig. 3). The final models achieved a mean test
sensitivity of 100%. Other performance metrics are reported in Table 2.

When tested on the holdout test set of 28 localizer images, the final models achieved
a sensitivity of 100%. Other performance metrics are reported in Table 2.
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Fig. 3: Mean test performance metrics for MobileNet V2 models in training

Table 2: Performance metrics for MobileNet V2 models with classification threshold
of 0.16

Performance metric Training mean Holdout mean

ROC AUC 0.99 1.00
Accuracy 95% 82%
Sensitivity 100% 100%
Specificity 89% 82%

3.1.1 Incorrectly Classified Examples

The incorrectly classified 2D localizer images were analysed using the SHAP explain-
ability method. In the early stages of the research, this demonstrated the need to
remove the mandible from the images, as prior to this removal the models were
confounded by the presence of fillings.

After the images had been cropped and models developed, the SHAP explainability
method was used to analyse the incorrectly classified examples in the holdout test set.
Three of the 28 images were incorrectly classified by all five models, and five other
images were misclassified by at least one of the models. All of these errors were false
positives. The average SHAP maps show that bright areas have contributed to the
models’ incorrect predictions, including other metal devices (Fig. 4a).1

1See supplementary figure 1 for all false positive average SHAP maps.
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(a) False positive, as predicted by five models. The mean output
probability of the image containing a clip is 0.46.

(b) True positive, as predicted by five models. The mean output
probability of the image containing a clip is 0.99.

(c) True negative, as predicted by five models. The mean output
probability of the image containing a clip is 0.00.

Fig. 4: Maps of average SHAP values. Any pixels highlighted in red have
contributed to the prediction that an aneurysm clip is present; any pixels highlighted
in blue have contributed to the prediction that no aneurysm clip is present. In the
case of the true positive, the aneurysm clip has been circled in green for clarity.
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3.1.2 Correctly Classified Examples

The SHAP explainability method was also used to analyse the localizer images that the
models classified correctly. Of the 28 images in the holdout test set, 20 were classified
correctly by all five models. The average SHAP maps for the true positives show
that the pixels containing aneurysm clips contributed positively to models’ correct
predictions that a clip is present (Fig. 4b). 2 The signal is much stronger than the
confounding signals in the false positive predictions, and is much stronger than any
signal in the true negative predictions where no clip has been detected (Fig. 4c). 3

3.2 Three-Dimensional CT Images

After models had been trained on three-dimensional CT images, a classification thresh-
old of 0.30 was chosen to maximize sensitivity whilst maintaining a high accuracy and
specificity (Fig. 5). The final models achieved a mean test sensitivity of 96%. Other
performance metrics are reported in Table 3.

Fig. 5: Mean test performance metrics for 3D models in training

When tested on the holdout test set of 22 three-dimensional CT images, the final
models achieved a mean sensitivity of 96%. Other performance metrics are reported in
Table 3. Of the 22 images, 19 were correctly classified by all five models. Of the three
images that were incorrectly classified by at least one model, two were false positives
and one was a false negative.

2See supplementary figure 2 for all true positive average SHAP maps.
3See supplementary figure 3 for all true negative average SHAP maps.
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Table 3: Performance metrics for 3D models with classification threshold of 0.30

Performance metric Training mean Holdout mean

ROC AUC 0.99 0.96
Accuracy 90% 95%
Sensitivity 100% 96%
Specificity 79% 95%

4 Discussion

Deep learning has previously been used successfully to detect medical implants. Pre-
trained convolutional neural networks have been used to detect pacemakers in chest
radiographs with 99.67% accuracy [27] and spinal implants in lumbar spine lateral
radiographs with 98.7% precision and 98.2% recall [28]. A convolutional neural network
trained from scratch has been used to identify dental implants in X-ray images with
94.0% segmentation accuracy and 71.7% classification accuracy [29]. In another appli-
cation, a segmentation network has been developed to identify orthopedic implants in
hip and knee radiographs with 98.9% accuracy and 100% top-three accuracy, exceeding
the performance of five senior orthopedic specialists [30].

The successful implementation of deep learning for implant detection is continued
in this application, the first to use deep learning to detect aneurysm clips. The trained
models exhibit excellent performance for both localizer images and full CT head scans.
Both types of model generalize well to the unseen data in the holdout sets and score
particularly highly in terms of sensitivity. The sensitivity for the localizer models is
100% in both the training and the holdout data: there are no dangerous false negatives.
The computational resources required to run the models are particularly low in the
case of the localizer images.

The use of an explainability method is particularly valuable in this application
because it demonstrates that the correct parts of the localizer image are informing the
models. In general, the positive (red) signal in the images is strongly localized and more
observable than the negative (blue) signal, which is weaker and more distributed. This
suggests that the models are being positively informed by the presence of aneurysm
clips, and are being informed on a more widespread and low level by the absence of
aneurysm clips.

As this application is a potential safety tool, the models have been developed and
classification thresholds chosen to maximize sensitivity and minimize false negatives.
As a result, they are sometimes confounded by other bright areas in the images,
making some false positives likely. This could create additional work for a human
operator, but it is a preferable error to dangerous false negatives. The heatmaps also
demonstrate that other metal devices such as skull flap fixing plates and skin clips can
be responsible for false positives (see supplementary figure 1). These are still valuable
to detect for MRI safety. Future work could assess these models on a CT head dataset
incorporating a wider range of metallic implants, to analyse whether models trained to
detect aneurysm clips specifically generalize to metal implant detection more broadly.
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It was anticipated that models developed for full CT heads might perform better
than models developed for localizer scans, as the aneurysm clip would be presented
in three dimensions and in greater detail. However, the sensitivity of the three-
dimensional models was slightly poorer. This may have been due to the presence of
too much other confounding detail, or may have been due to the models having been
trained from scratch rather than taking advantage of pre-learned patterns. Pre-trained
networks were used for the localizer scans due to their ready availability for transfer
learning in two-dimensional image data. At this time, there is a notable lack of equiv-
alent pre-trained networks available for transfer learning in three-dimensional image
data. If pre-trained three-dimensional networks become available in the future, then
they might be successfully leveraged in this application.

Future work could consider using an ensemble model. Ensemble methods are con-
sidered the state of the art for many machine learning applications, as they harness the
power of weaker learners [31]. An ensemble model for this application could incorporate
different learning algorithms, as well as bagging or boosting approaches.

4.1 Limitations

The size of the data is a limitation of this research, caused by the rarity of CT scans
depicting aneurysm clips. If it were possible to obtain more data this might enable the
development of even more accurate models in training, and enable more representative
assessment of models in the holdout set. We have mitigated this limitation to an extent
by augmenting the training data with horizontal flip, thus artificially increasing the
size of the dataset.

Another limitation of this research is the lack of external validation. External
validation sets are difficult to obtain as appropriate publicly available databases do not
exist. Our research team is in the process of planning and gaining governance clearance
for such accessible studies. We have mitigated this limitation as far as possible in
this study by reserving an unseen holdout test set. However, these data originate
from the same source as the training data, and the metrics reported may not be
representative of the models’ performance on data from a different distribution. For
example, the balance of the data used in this study is not representative of the typical
MRI patient population, in which only a small minority would have aneurysm clips
present. An external validation set would allow for more accurate assessment of the
models’ capability to generalize to other populations.

5 Conclusion

A pre-trained MobileNet V2 neural network achieved high accuracy and 100% sensi-
tivity for the detection of aneurysm clips in CT localizer scans, and the explainability
method demonstrated that the network was focusing on appropriate regions of interest
in the images. A trained-from-scratch neural network also achieved high accuracy and
sensitivity for the detection of aneurysm clips in full CT head scans. This application
could be a useful addition to current processes, enabling automatic safety screening
for devices in advance of MRI appointments.
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“Deep learning detection of aneurysm clips for magnetic resonance imaging safety” – 

response to editor 

We would like to thank the editor and reviewers for their thorough and helpful comments on the 

paper. We have subsequently made major revisions. Please find responses to suggestions 

highlighted below. 

Comments to the author: 

1) page 2 line 28: Most = what %? 

We agree that this would be a useful inclusion – unfortunately precise numbers are difficult to 

acquire. For clarity, we have updated the wording to “the vast majority of patients with aneurysm 

clips will have had CT head imaging previously performed as part of their treatment”. 

2) page 3 line 26: Of the 229 how many had clips vs not? Then for thew 23 and 206. Same 

below for the full scans. 

We have repeated the model training with re-balanced total numbers of cases/controls in 

response to Reviewer 1’s comment on the imbalance. All new numbers have been reported, 

along with breakdowns of how many images contained clips and how many did not. 

3) page 3 line 27: Verify that you split at the scan not slice level - it sounds it but need to verify. 

We have updated the wording to reflect this verification. 

4) tables 1-3: All of these need the data to be compared statistically for significant differences - 

likely a repeated measures ANOVA. 

We may need further clarification on this suggestion. We have consulted two statisticians who 

do not think that repeated measures ANOVA is a suitable analysis in this application. We are 

very happy to discuss this point further to better understand the suggestion. 

5) Delete the figures of ROC curves where data already in the tables. 

We have deleted these figures. 

Reviewer 1: 

Introduction: I would recommend that the paragraph beginning pg 2, line 17 would be more 

suitable for the discussion section, rather than the introduction. 

We have moved the paragraph as suggested. 

Materials and Methods: Would recommend that the RIS manufacturer / model is identified for 

clarity to the reader. 

Author’s Response to Reviewers‘ Comments



We have now identified the RIS manufacturer/model. 

Materials and Methods: it would be good to state in the results section if all images were agreed 

upon by 2 radiologists, or if and for how many a 3rd radiologist was needed to confirm. 

We agree that this would be a useful inclusion – unfortunately we do not have access to this 

information. 

Materials and Methods: On page 2, line 48 to page 3, line 2 the authors describe that 'for each 

scan with an aneurysm clip present, a scan with no aneurysm clip was identified' for matched 

controls. If this is the case, why were there 140 datasets with aneurysm clips and 122 without as 

identified in the abstract, rather than an equal number of each? 

The explanation is that some control scans were lost due to issues such as duplication and 

corruption of files. However, in light of this comment, we have re-balanced the dataset and re-

run the analysis. All reported counts and metrics now reflect this change. There are now 140 

scans with aneurysm clips and 140 without, a precise balance which we feel enhances the 

quality of the analysis.  

Materials and Methods: Spilt (page 3) it is not clear how this number was reduced from 262 to 

229 localiser / 202 reconstructed CT scans. It would also be useful to the reader to understand 

the number of image datasets containing / not containing aneurysm clips for each in the 

methods section. 

We have updated the wording to clarify the selection of subsets (sagittal localizers and scans 

reconstructed using a bone kernel). We have also included counts of those with aneurysm clips 

and those without. 

Materials and Methods: How were the holdout test sets for both localisers and reconstructed 

datasets chosen? 

We have updated the wording to reflect that images “were randomly divided at a scan level” into 

the training and holdout sets. 

Materials and Methods: Image Preprocessing (Page 4). Please clarify how the images were 

cropped, i.e. manual / automatic, and with what software as the preprocessing performed. 

We have updated the wording to reflect that “the images were preprocessed before model input 

by a deterministic automatic pipeline developed in Python using tools from OpenCV, SciPy and 

scikit-image.” 

Results: Localiser results - recommend that the clip / no clip dataset numbers is described in 

methods rather than results. Again, it would be useful for the reader to understand why there 

were unequal numbers of clip / no clip datasets. 



Total numbers have now been balanced as above, and clip/no clip numbers have been reported 

in methods. 

Results: 3.1.1 Is useful in determining what caused the false positives, i.e. fillings. However, 

could datasets containing fillings not have been used in the training datasets within the 'no clip' 

dataset to mitigate this? 

Before the decision was made to crop images to remove fillings, fillings were included in both 

the clip and no clip datasets. This resulted in false positives, which is why the decision was 

made to exclude the mandible. 

Results: As with the localiser dataset, the reader would benefit from a table similar to Table 1, 

showing the performance of different base models. This is not discussed and would be useful to 

see how the models compare between localiser and reconstructed datasets and if different, why 

this could be. 

We could not use a base model for the 3D networks as no such pre-trained models exist. The 

model was trained from scratch, which is why no similar analysis could be conducted. 

Discussion: it would be good to understand if the model truly is a detector of aneurysm clips, or 

merely metallic implants that has only been trained on aneurysm clips? In which case, are these 

really false positives if the aim is to detect any metallic implant for the purposes of MR safety, 

which could then be determined by the appropriate specialist visually inspecting the images? 

This is alluded to within the discussion on page 12, line 39 and further evident in the heat maps 

within the supplementary material figure 2, where the skull flap fixing plates and skin clips also 

elicit hot spots on the probability maps. It would be interesting to see the results for patients who 

underwent neurosurgery and had skin clips / burrhole plate etc, without aneurysm clips. 

This is a very helpful point, and we are particularly grateful for the thorough attention paid to the 

supplementary material. We have updated the wording to include the reviewer’s astute 

observation regarding the skull fixing plates and skin clips. Having re-run the analysis on the 

newly balanced dataset, patients without aneurysm clips but with other implants are now 

represented in the supplementary material as false positives. We have further updated the 

wording to acknowledge that “future work could assess these models on a CT head dataset 

incorporating a wider range of metallic implants, to analyse whether models trained to detect 

aneurysm clips specifcally generalize to metal implant detection more broadly.” 

Discussion: The discussion about the use of ensemble methods is interesting, and would be 

good to know why the authors did not take this step, already having data for 5 models? 

Reflecting on this observation, we have removed the reference to an ensemble of the five 

trained models. Our intention in reporting these “simple ensemble” results was to demonstrate 

the potential power of weak learners. However, upon consideration, we think that this confuses 

the suggestion we are making, which would be a much more extensive investigation of 

ensembling. We have updated the wording to reflect that this might include “different learning 

algorithms, as well as bagging or boosting approaches”. 



Conclusion: neglects to summarise the findings for the reconstructed CT scans. Recommend 

including this also. 

Reconstructed CT scans now included in conclusion. 

Figure 4(a) + (b): whilst the mean ROC curves are shown, the 5 models are indistinguishable. It 

would be useful to either label all model lines for clarity, or at the least, identify the chosen 

model curve please. Likewise with figure 7. 

As per editor’s suggestion, these figures have been removed. 

Reviewer 2 

Clearly, the clips are really small and it is expected that 3D networks would heavily overfit and 

not perform well, therefore, some techniques against that must be investigated. 

We appreciate this suggestion, which would be an interesting exercise and a potential direction 

of future work. We think it is beyond the scope of this application, which found that the use of 

localizer images yielded better sensitivity results and was drastically less computationally 

expensive. The suggested refinement of the 3D technique would be valuable had the 2D 

technique not been so successful. 

Is it the first work in this area? No comparisons to other methods are done. 

This is the first work in this area. We have now clarified this at the start of the discussion, where 

we note the work done in detection of other implants, and acknowledge “the successful 

implementation of deep learning for implant detection is continued in this application, the first to 

use deep learning to detect aneurysm clips.” 

Reviewer 3 

The authors mention the use of a GPU for training. Would be nice to specify which GPU was 

used. 

We have now included details of the GPU. 

The authors used five models, namely VGG16, Inception V3, Xception, DenseNet and 

MobileNet V2. While the results (at least for the localizer images) speaks for themselves, the 

authors should explain why the included those five models in their study. 

We have updated the wording to explain that these are well-established models. 

It would be interesting to compare the selected models not just for their performances, but also 

with respect to other parameters (e.g. model parameters, inference time, FLOPs etc.) 

We have now analysed these parameters and included them in Table 1. 



The selected network architectures are by today's standards a bit outdated. Why did they not 

use something more modern like UNet or its derivatives or even a transformer architecture? 

We agree that the networks are not amongst the latest developments in ML-based image 

classification - however they often perform extremely well, as demonstrated in this application. 

We have now updated the discussion of future work to suggest that different learning algorithms 

could be considered in an ensemble: transformers are such an architecture that could be 

included.  

The authors mention that they didn't use a pre-trained 3D-CNN, because they didn't find one 

readily available. Would it be an option to pre-train one by yourself or do you lack compute 

ressources to do it by yourself? 

We have trained a 3D network from scratch to classify presence of aneurysm clips in this 

application. The pre-training of a network that could have much broader transfer learning use 

(along the lines of the 2D networks trained on ImageNet) would require vast computational and 

imaging resources which we do not possess. 

They mention in the text that they used flipping as the only data augmentation technique and 

that additional augmentation didn't improve the performance. However, they conclude that "This 

suggests that there might be scope to improve the models' performance even further with 

access to more training data". Why does augmenting the data further does not improve the 

performance, yet more training data would? 

It is true that we might not be able to improve the models’ performance with access to more 

data (especially as the performance is already very high). Our reasoning was that a dataset 

which contained more examples of aneurysm clips would give the models more information than 

artificially increasing the size of the dataset using augmentation. To clarify, we have removed 

this wording from the discussion section on explainability, leaving a similar point in the 

limitations that “if it were possible to obtain more data this might enable the development of 

even more accurate models in training, and enable more representative assessment of models 

in the holdout set”. 

The authors should report the (hyper-)parameters used (e.g learning rate, batch size, probability 

of horizontal flip etc.) 

These details have been added. 

The size of the dataset and the lack of external validation are limitations that the authors also 

mention in their paper. Regarding external validation, they state that their "research team is in 

the process of planning and gaining governance clearance for such accessible studies". I think it 

would be better to defer the publication of this journal article to include the results of this study. 

We appreciate and understand this suggestion. We think that the reported investigation is the 

initial stage of an important application which we hope to progress in a timely manner. Obtaining 

governance clearance for data access outside the routine care team can be an involved and 



long-winded process and we have no guarantee of the timelines for this. This work will require 

applications for additional funding which will be enhanced by peer reviewed publications in 

respected journals. On balance we believe that expediting dissemination of these results is in 

the interests of both patients and the research community.  
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