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Abstract 
Robots are becoming more prevalently used in industry and society. However, in order to 
ensure effective use of the trust, must be calibrated correctly. Anthropomorphism is one 
factors which is important in trust in robots (Hancock et al., 2011). Questionnaires and 
investment games have been used to investigate the impact of anthropomorphism on trust, 
however, these methods have led to disparate findings. Neurophysiological methods have 
also been used as an implicit measure of trust. Feedback related negativity (FRN) and P300 
are event related potential (ERP) components which have been associated with processes 
involved in trust such as outcome evaluation. This study uses the trust game (Berg et al., 
1995), along with questionnaires and ERP data to investigate trust and expectations towards 
three agents varying in anthropomorphism, a human, an anthropomorphic robot, and a 
computer. The behavioural and self-reported findings suggest that the human is perceived 
as the most trustworthy and there is no difference between the robot and the computer. The 
ERP data revealed a robot driven difference in FRN and P300 activation, which suggests 
that robots violated expectations more so than a human or a computer. The present findings 
are explained in terms of the perfect automation schema and trustworthiness and dominance 
perceptions. Future research into the impact of voice pitch on dominance and 
trustworthiness and the impact of trust violations is suggested in order to gain a more holistic 
picture of the impact of anthropomorphism on trust. 
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Ethical Statement 
This study was granted full ethical approval by the Faculty of Health and Human 
Sciences at the University of Plymouth and adheres to the current BPS guidelines 
(British Psychological Society, 2022). Prior to taking part in the study, all participants 
were fully briefed and informed of their right to withdraw. All participants were 
required to sign a consent form (Appendix A) before being allowed to participate in 
the study and were given a debrief form following the experiment (Appendix B)  
Numerical values were assigned to participants to protect the anonymity of their 
data. All raw data was kept in a secure file only accessible to myself (Lucy Olivia 
Wilson) and Dr Jeremy Goslin. All data was handled in accordance with the Data 
Protection Act (1998). 

The procedures and stimuli used in this study posed minimal risk to the participants. 
In application of the EEG cap saline gel was used. Participants were told to inform 
the researcher of any discomfort. All apparatus was cleaned and disinfected 
between uses. 

Introduction 
Robots are becoming more prevalently used in day to day life. Labour that used to 
be done exclusively by humans is shifting to machines or robots (Brynjolfsson & 
McAfee, 2014). While some machines are very simple and transparent in their 
operation, other machines have become more complex and the way in which they 
work has become more opaque. This lack of knowledge leaves a gap which needs to 
be filled with trust that the machine will work as the user expects it to. In current 
technology, probably one of the most complex machines are robots. 
 
In 2021, 3 million industrial robots were operational with 384,000 units shipped in 
2020, which is expected to rise to 500,000 by 2024 (World Robotics Report, 2021). 
These machines can be found in various sectors, included but not limited to, 
manufacturing (Edwards, 1984), healthcare (Schäfer et al., 2019; Guizzo & 
Goldstein, 2005; Heerink et al, 2010; Bemelmans et al., 2012; Pennisi et al., 2016; 
Chang & Kim, 2013), education (Belpaeme et al., 2018; Chang et al, 2010), the 
military (Schaefer et al., 2014) and hospitality (Gombolay et al., 2016, Salem et al., 
2015, Tolmeijer et al., 2021). However, robots are ineffective if they are not used due 
to lack of trust or if they are over trusted and used in inappropriate conditions (Muir, 
1994, Parasuaraman, & Riley, 1997; Hancock et al, 2011). 
 
Trust, at its most basic level, is the willingness of a party to be vulnerable to the 
actions of another, despite the ability to control or monitor the other party (Mayer, 
Davis & Schoorman, 1995). Trust can be characterized by the trustors beliefs (Hoff & 
Bashir, 2015) and the behavioural manifestations of trust (Lee & See, 2004; 
Madhavan & Wiegmann, 2007). In addition, the outcomes of trusting behaviours can 
impact the trustors beliefs about the trustee (Mayer et al., 1995; King-Casas et al., 
2005). Trust is a fundamental part of how humans interact with other humans and 
machines (Hoff & Bashir, 2015; Lee & See, 2004; Hancock et al, 2011; Lee & 
Seppelt, 2009). The mechanisms which underly human-human trust can be 
extended to automation. For example, the antecedents of trust in humans are ability, 
benevolence and integrity (Mayer et al., 1995), these have been replaced with 
similar concepts, performance, purpose and process for trust in robots (Lee & See, 
2004; Lee & Moray 1992), while keeping the rest of the model the same. In addition, 
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a review revealed, humans tend to react socially to machines as they do with 
humans, however, there are subtle differences in the way that humans perceive 
other humans and machines (Madhaven & Wiegmann, 2007). There are two 
dominant paradigms used to explain how humans perceive machines, the unique 
agent hypothesis (UAH) and computers as social actors (CASA). 
 
UAH suggests humans view machines differently to humans based on the 
characteristics of the machine (de Visser et al, 2016), therefore, each agent and 
situation respectively is unique and may or may not evoke similar mental models to 
that of human-human interaction (Hoff & Bashir, 2015). However, CASA suggests 
humans attribute humans-like characteristics onto machines, applying social rules 
and expectations to automation (Nass & Moon, 2000; Rai and Diermeier, 2015), this 
is known as anthropomorphism (Duffy, 2003) and is an important factor in human-
robot trust (Hancock et al, 2011; Hancock et al, 2021; Natarajan & Gombolay, 2020). 
However, the interaction between anthropomorphism and robots is complicated. 
Wang & Quadflieg (2015) suggests robots are viewed as less believable, intelligent 
and capable of experiencing emotions, as well as more eerie. There are an number 
of factors which influence whether humans anthropomorphise machines, including 
past experience, behaviour of the machine and how the machine looks. For 
example, human-like communication in intelligent virtual assistants such as Siri leads 
to increases in anthropomorphism (Sin & Munteanu, 2020; Guzman). Research 
shows humans have higher expectations of, and have more trust in, more 
anthropomorphic agents (Hinds et al, 2004; Klüber & Onnasch, 2022; Yang et al., 
2022; Waytz et al., 2014; Chen & Park, 2021; Pak et al, 2012; de Visser et al, 2012). 
Human-human trust and human-computer trust have similarities and differences. 
Understanding the role of anthropomorphism in modulating human-machine trust is a 
key issue. This experiment will compare human-human trust, with trust in a computer 
and a humanlike robot to investigate the impact of anthropomorphism. Within the 
current literature this issue has primarily been explored through the use of 
questionnaires and behavioural data. 
 
The trust in Automation Scale (TAS, Jian, Bisantz, & Drury, 2000) and the Trust 
Perception Scale-HRI (TPS-HRI, Schaefer, 2013) are two examples of 
questionnaires measuring trust. Some findings investigating trust in robots suggest 
that anthropomorphism increases self-reported trust (Kulms & Kopp, 2019; Jensen et 
al., 2021; Alarcon et al 2023; Tulk & Weise 2018), while other researchers suggest 
anthropomorphism has no effect on self-reported trust (Alarcon et al., 2023; Alarcon 
et al., 2021; Jain et al., 2022). The differences may be due to some of the issues 
with questionnaire data, for example, they are subject to biases. These impact the 
way participants behave or respond to stimuli and can lead to demand 
characteristics and discordant findings (Kessler et al., 2017). In addition, 
questionnaires alone do not allow trust to be measured within social contexts, 
instead they rely on participants making an subjective judgement of how they trust 
robots without having any experience within a social context. There are a number of 
different ways to measure trust implicitly, without the use of questionnaires. One of 
the most commonly used methods is through the use of economic games, for 
example the trust game (Berg et al., 1995). 
 
The trust game (Berg et al, 1995) has been used to investigate social aspects of 
human-human trust such as gender (Buchan et al, 2008), race (Simpson et al, 2007) 
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and personality (Evans & Revelle, 2008). In the trust game participants are endowed 
points and can choose how much they wished to invest, then partner returns a 
percentage of this original investment. When the outcome is revealed it can be 
different to what was expected, the extent of the difference is known as the reward 
prediction error and it is used to evaluate whether or not to continue trusting 
someone (King-Casas et al., 2005). The trust game uses investments as an implicit 
measure of trust. The assumption is that player A will only invest more if they trust 
player B will reciprocate and return a portion of that money. Recently the trust game 
has also been used when investigating human-robot trust, finding that there is no 
impact of anthropomorphism on investment behaviour (Tulk & Wiese, 2018; Kulms & 
Kopp, 2019; Alarcon et al., 2021; Alarcon et al., 2023). Investments, in the trust 
game, suggest anthropomorphism has no effect on trust, however this contrasts with 
the split view in self-reported data. The use of neurophysiological methods has been 
suggested (Drnec et al., 2016; Parasuraman, 2003) allowing implicit measures of 
trust to be recorded alongside behavioural measures, such as the trust game. 
 
Functional magnetic resonance imagery (fMRI) and electroencephalography (EEG) 
are two neurophysiological methods which have been used to investigate the spatial 
and temporal neurological origins of trust. fMRi data suggests activity in the caudate 
nucleus (King-Casas et al., 2005), anterior paracingulate cortex (McCabe et al., 
2001) and orbitofrontal cortex (Krain et al., 2006) is associated with aspects of 
outcome and trust evaluation. fMRI data also more reliably distinguishes between 
trust and distrust compared to self-reported data (Dimoka, 2010). EEG results reveal 
alpha and beta band power have higher power in situations of trust, whereas gamma 
band power is stronger in situations of mistrust (Oh et al, 2017; Blais et al, 2018). 
Within event related potential (ERP) research two main ERP components have been 
associated with trust, feedback related negativity (FRN) (Long et al., 2012; Wang et 
al., 2016) and P300 (Bell et al, 2016; Wang et al, 2015).  
 
In seminal work, Holroyd and Coles (2002) reported FRN, this a differential wave 
recorded at mid-central sites and peaks between 200ms to 300ms after feedback 
onset, sensitive to positive or negative feedback (Nieuwenhuis et al., 2004). FRN is 
thought to be associated with reward prediction errors and reinforcement learning 
(Holroyd & Coles, 2002). In addition mid-brain regions associated with FRN have 
been liked to reinforcement learning, reward predictions, outcome evaluation (Barto, 
1995; Montague, Dayan & Sejnowski, 1996) and adapting future behaviour (Schultz, 
2002), which are features of calibrating trust (Mayer et al., 1995). In a study involving 
a coin-flip task, FRN amplitude increased following trust decisions, which was 
significantly related to outcome evaluation (Long et al., 2012). The research 
suggests FRN is larger when participants decide to trust (Hu et al., 2018), has a 
greater amplitude in response to loss feedback (Wang et al., 2015; Hu et al., 2018), 
when an outcome is worse than expected (Holroyd & Coles 2002; Nieuwenhuis et 
al., 2004; Schultz et al., 1997) and is driven by the lack of an expected reward (Wu & 
Zhou, 2009; Holroyd & Coles 2002; Wang et al., 2015; Sambrook & Goslin, 2015).  
Therefore, a larger FRN amplitude will be expected following a trust decision which 
lead to unexpected negative feedback compared to expected positive feedback. In 
the context of this experiment, a larger FRN amplitude would be expected when a 
human returns less than was invested (loss trial) as this is worse than expected 
outcome. The human is the most anthropomorphic agent and therefore they will be 
expected to return the most and when the they fail to meet these expectations a 
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larger FRN will be seen. The amplitude of the FRN on loss trials will decrease as the 
agent becomes less anthropomorphic, such that a robot will have a slightly smaller 
FRN amplitude compared to the human and the computer will have a smaller FRN 
amplitude compared to the robot as expectations of these agents decreases.  
 
P300 is a positive component, which peaks around 200ms-600ms after feedback 
presentation. The scalp distribution of P300 is noted as the amplitude change across 
midbrain electrodes, typically P300 increases in magnitude from frontal to parietal 
sites (Johnson, 1993). P300 is linked to outcome expectation (Hajcak et al., 2005, 
Wu and Zhou, 2009), outcome evaluation (Yeung and Sanfey, 2004), decision 
making (Nieuwenhuis et al., 2005; Yeung & Sanfey, 2004) and updating mental 
representations (Donchin, 1981; Heslenfeld, 2003) which are key components of 
trust formation (Mayer et al., 1995). Research investigating trust has noted that the 
P300 component’s amplitude is more positive following trust decisions (Long et al., 
2012), gain feedback (Yeung & Sanfey, 2004; Hajcak et al., 2005; Holroyd et al., 
2016; Wu & Zhou, 2009) and unexpected feedback (Hajcak et al., 2005; Hajcak et 
al., 2007; Wu & Zhou, 2009). Therefore, a larger P300 amplitude is expected 
following a trust decision that lead to unexpected positive feedback, compared to 
expected negative feedback. In this experiment a more positive P300 would be 
expected when a computer returns more than the initial investment as the computer 
is the least anthropomorphic and therefore the participant expects the least from it, 
therefore when it violates this expectation a more positive P300 amplitude will be 
seen. The P300 amplitude on gain trials will decrease as the partners become more 
anthropomorphic such that the P300 amplitude will be slightly smaller for robots 
compared to computers, and smaller for humans compared to robots as the 
participant will be expecting more from these agents. 
 
The aim of this study is to use electrophysiological correlates, related to trust, to 
examine the neurophysiological correlates of trust and how they may be modulated 
by anthropomorphism. This study will use questionnaire data, implicit measures of 
trust through investments in the trust game, and electrophysiological correlates to 
understand the mechanisms of trust and its relationship to anthropomorphism.  
Based on the previous research the following hypotheses are made. 
 
Hypothesis 1:  There will be no difference in investment behaviour between the 
human, the pepper robot and the computer. (Kulms & Kopp, 2019; Alarcon et al., 
2021; Alarcon et al., 2023; Tulk & Weise, 2018) 
 
Hypothesis 2: Humans will be perceived as most trustworthy, followed by the pepper 
robot and lastly the computer (Kulms & Kopp, 2019; Jensen et al., 2021; Tulk & 
Wiese, 2018) 
 
Hypothesis 3: There will be a more negative going FRN for loss trials with the 
humans, followed by a less negative FRN on lost trials with the pepper robot and the 
least negative FRN on lost trials for the computer. (Hinds et al., 2004; Hüber & 
Onnasch, 2022; Yang et al., 2022; Wang et al., 2015; Hu et al., 2018; Wu & Zhou, 
2009; Holdroyd & Coles, 2002; Sambrook & Goslin, 2015) 
 
Hypothesis 4: P300 will have a larger amplitude on gain trials for the computer, 
followed by a smaller P300 amplitude on gain trials for the pepper robot, and the 
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least positive P300 component on gain trials for the human (Hinds et al., 2004; 
Hüber & Onnasch, 2022; Yang et al., 2022; Sato et al., 2005; Yeung & Sanfey, 2004; 
Hajcak et al., 2005, 2007; Yeung et al., 2005; Wu & Zhou, 2009) 

Methodology  
In this experiment, each participant was invited to play a game with a human, a 
computer and a robot. The order of presentation of these partners was 
counterbalanced. In the human condition participants played with the researcher, in 
the computer condition they played with the computer, and in the robot condition 
they played with a pepper robot (SoftBank, 2014). The game used was an 
investment game in which participants were endowed points and could choose how 
much they wished to invest, this was used as an implicit measure of trust. The 
partner then returned a percentage of this original investment. The responses in this 
game, in each case were scripted, and the scripted payback was also 
counterbalanced between conditions. Following each game, the participants were 
asked to fill out a questionnaire regarding their perceptions of the partner they had 
played with. Throughout this procedure the participants EEG was recorded.  
 

Participants: 
45 participants were recruited for this study (F=31, M= 13, O= 1), however, due to 
technical issues, the data from 6 participants was not recorded (F=4, M=2). 
Therefore, in the final data set there were 39 participants (F= 27, M= 11, O= 1) for 
this experiment, all of which were aged 18 to 27 years old and students at the 
University of Plymouth. These participants were recruited via the Plymouth 
Psychology Participant Pool, using the SONA system (S, Systems, 2022). All 
participants had normal or correct-to-normal vision and were right handed.  
 

Procedure:  
Participants were asked if they had any allergies then following this were asked to 
read and sign a consent form. After this the EEG cap was applied to their head using 
the 10-20 system. Once the cap had been applied, the instructions for the trust game 
were presented on the computer screen, which the participants could read through at 
their own pace, and participants were asked if they had any questions. Following this 
the participants would start playing the game with the partner, the human, the 
computer or the pepper robot. The robot and human were situated to the right side of 
the monitor when playing the game, within the visual field of the participant. In this 
trust game, modified from Berg et al (1995), participants are endowed with 2 points 
each trial. They have the option of investing 0, 1 or 2 of these points into the partner, 
giving their responses on a key pad kept in their hands for the whole of the 
experiment. If the participant invested 0 points the screen turns red, 1 point the 
screen turns blue and 2 points the screen turns green. There was then a blank 
screen for 4200 to 4600ms. This was followed by a screen which states how many 
points the player banked and invested and that they were waiting for the partner to 
return the investment for 2000 to 6000ms. At this point the robot would make a 
random happy or thinking animation and say ‘Thank you for investing X in me this 
round, let me see what I can return’, the computer would present the same 
statement on the screen and the human would make some similar thinking 
movement and then press a button on their keypad. The counterpart’s reciprocation 
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strategy was manipulated by the experimenter (50% reinforcement rate). All return 
percentages were preprogramed with the same probability of returning a round 
percentage between 50%-150%, there were three orders for these percentages and 
the order of returns was counterbalanced along with the order of the investors. 
Following this there was a fixation cross which was on the screen for between 2000-
2500ms before the percentage returned was on the screen for 1500ms. After the 
percentage was presented, there was another fixation point on the screen for 
1000ms followed by the actual number of points returned for 1500ms. To complete 
the trial the screen returned to black and there was a summary of the total points the 
participant had in the bank, the participant the pressed enter to continue to the next 
trail. There were 45 trials per game. After the completion of the trust game 
participants were asked to fill out a generic trust questionnaire about their perception 
of the partner they were playing with.  
 

EEG recording, processing and analysis: 
EEGs were recorded from 64 scalp sites using tin electrodes mounted in an elastic 
cap (actiCHamp Plus, Brain Products GmbH, Gilching, Germany) following the 
international 10 –20 system. Vertical electro-oculograms (EOGs) were recorded from 
the underneath the right eye which was cleaned using alcohol before application. 
Electrode impedance was kept below 10 k Ω for all channels. All electrodes were 
referenced using the left mastoid electrode, we then re-referenced offline to an 
average of the left and right mastoid electrodes.  
The FPz electrode was used to ground. ERPs were time-locked on the visual onset 
of the presentation partner’s investment return with 1000msec time window spanning 
from 200 to 800msec before and after the time-lock. A fully-automatic trial rejection 
procedure was run on these ERPs to exclude segments violating the following 
parameters: maximum or minimum voltages of +200µV and 150µV respectively, a 
maximal voltage difference of 200µV over a 100 msec interval window, and minimum 
amplitude of 0.5µV within 100 msec intervals. To maximize the signal/noise ratio, 
these parameters were slightly manually adapted for each participant and leading to 
15% of segments rejected. Any individual electrodes which had more than ~8% of 
rejected segments were substituted with topographically interpolated replacements 
(Perrin et al., 1989), over all of the participants 1.4% of the electrodes replaced.  
A pairwise comparison, based on a cluster randomisation technique (Maris & 
Oostenveld, 2007), was used to conduct a the statistical analysis of ERP 
components. For the whole time-window, two-tailed t-tests were performed, each 
electrode-time and electrode-signal sample pair were compared for the partners, 
separately for positive or negative returns. Samples with a t statistic above the 
significance threshold of p < .05 were clustered together with regard to their spatial 
and temporal features. Each cluster included a minimum of eight samples and was 
subsequently used for the cluster analysis. The cluster-level t statistic was calculated 
as the sum of the t statistic of all electrode-time samples of a given cluster. The 
cluster with the largest t statistic was selected for a Monte-Carlo simulation. During 
this, the original pairs of t-tests sample that made up the cluster were repeated 1000 
times, with arrangements of each paired samples assigned randomly to the human, 
robot or computer with either a positive or negative return. This created a Monte-
Carlo distribution of summed t statistic corresponding to the null hypothesis. A 
Monte-Carlo p-value was calculated as the ratio of the 1000 summed t statistics in 
the random distribution that was above the cluster-level t statistic. A p-value above p 
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< .025 was considered significant. Averaged ERP were re-plotted as t-values in the 
time domain, derived from t-tests against baselines of zero. Topographic maps were 
created using the t-values of the significant cluster in Brain Vision Analyzer (Brain 
Products, Munich, Germany, v. 2.1), using spherical spline interpolation with an 
order of splines of 5 and a maximum degree of Legendre polynomials of 10 in order 
to smooth the map. 
 

Results 
Within this study three forms of data were collected. Behavioural data, this consisted 
of investments within the trust games, self-reported data, a questionnaire regarding 
perceptions of each partner after playing the trust game, and finally EEG data, ERP’s 
following feedback presentation. The behavioural and self-reported data was 
analysed using Jamovi (The jamovi project, 2022; R Core Team, 2021; Singmann, 
2018; Lenth, 2020) and the EEG data was analysed using Brain Vision Analyzer 
(BrainVision Analyzer, Version 2.2.2, Brain Products GmbH, Gilching, Germany). 
 

Behavioural results: 
The mean investments were 1.36 for Human, 1.18 for Robot, and 1.23 for Computer 
(see figure 1). To analyse any differences between the three conditions a repeated 
measures ANOVA was used. This analysis found there was a significant difference 
in investments between the three conditions (F=76, 2) = 7.95, p<.001). The post hoc 
test, Ptukey, revealed main effects were found for comparison between human-robot 
(p=0.002) and for human-computer (p=0.026), however, not for robot-computer 
(p=0.509). This goes against the first hypothesis, that there would be no differences 
in behavioural trust between the three conditions, as participants invested 
statistically more in the human partner compared to both the human and the robot. 
However, there was no statistically significant difference between investments for the 
robot and computer partners. 

 
 
 

Figure 1: Mean investments with error bars showing standard deviation 
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Self-reported measures: 
In this experiment, participants were asked to complete a questionnaire after each 
game. This questionnaire measured perceptions of trustworthiness, likeability, 
intelligence and dominance. Although this study primarily investigates perceived 
trust, in line with previous research the peripheral traits were also investigated 
(Calvo-Barajas et al., 2020; Kim et al., 2020; Kraus et al., 2018; McAleer et al., 
2014).   
 

Trustworthiness: 
Mean self-reported measures of trustworthiness were 5.29 for human, 4.11 for robot 
and 3.97 for computer (See figure 2). To analyse any differences between the three 
conditions a repeated measures ANOVA was used. This analysis found there was a 
significant difference in perceived trustworthiness between the three conditions 
(F(76, 2) = 17.8, p<.001). The post hoc test, Ptukey, revealed main effects were 
found for comparison between human-robot (p=<.001) and for human-computer 
(p=<.001), however, not for robot-computer (p=0.827). This partially supports the 
second hypothesis, that anthropomorphism would increase self-reported trust, as the 
more anthropomorphic agent, the human, was perceived as more trustworthy. 
However, the robot was not statistically perceived as being more trustworthy than the 
computer, therefore not fully supporting hypotheses 2 as even though the robot was 
more anthropomorphic it was not perceived as any more trustworthy than the 
computer. 
 

 
 
 
 
 
 
 
 

Figure 2: Mean self-reported trust scores with error bars showing standard deviation 
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Peripheral self-reported measures: 

Likeability: 
Mean scores for perceived likeability were 5.98 for human, 5.07 for robot and 3.82 
for computer (see figure 3). To analyse any differences between the three conditions 
a repeated measures ANOVA was used. This analysis found there was a significant 
difference in perceived likeability between the three conditions (F(76, 2) = 36.8, 
p<.001). The post hoc test, Ptukey, revealed there were main effects for all three 
comparisons, human-robot (p= 0.002), human-computer (p=<.001) and robot-
computer (p=<.001). 
 
 
 

 
 
 

Intelligence: 
Mean self-reported measures of intelligence were 5.42 for human, 4.98 for robot and 
4.72 for computer (See figure 4). To analyse any differences between the three 
conditions a repeated measures ANOVA was used. This analysis found there was a 
significant difference in perceived intelligence between the three conditions (F(76, 2) 
= 12.3, p<.001). The post hoc test, Ptukey, revealed main effects were found for 
comparison between human-robot (p=0.004) and for human-computer (p=<.001), 
however, not for robot-computer (p=0.195). 

Figure 3: Mean self-reported likeability scores with error bars showing standard 
deviation 
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Dominance: 
Mean self-reported measures of dominance were 3.00 for human, 3.28 for robot and 
3.80 for computer (See figure 5). To analyse any differences between the three 
conditions a repeated measures ANOVA was used. This analysis found there was a 
significant difference in perceived dominance between the three conditions (F(76, 2) 
= 4.30, p= 0.017). The post hoc test, Ptukey, revealed main effects were found for 
comparison between human-computer (p=0.005), however, not for human-robot 
(p=0.650) or robot-computer (p=0.150) . 
 

 
 
 

Figure 4: Mean self-reported intelligence scores with error bars showing standard 
deviation 

 

Figure 5: Mean self-reported dominance scores with error bars showing standard 
deviation 
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EEG Results: 
ERP responses to feedback were sorted into six groups and entered into statistical 
analysis: human gain – robot gain, human gain – computer gain, computer gain – 
robot gain, human loss – robot loss, human loss – computer loss, computer loss – 
robot loss. The data was split like this to investigate any differences between the 
agents. By splitting the valence of the outcome into gain and loss, inferences can be 
made about the initial expectation of the agent. For example, if there is a larger FRN 
for gain trials for robots compared to humans, then it would suggest that they were 
expecting more from the robot and the actual outcome was worse than expected. If 
there is a larger FRN for humans on loss trials then it would suggest that they were 
expecting more from the human as the actual outcome was worse than expected. In 
terms of P300, if there was a larger P300 for computers on gain trials compared to a 
robot it would suggest that this is an unexpected outcome. These findings would 
support the hypotheses regarding FRN and P300 as the violation in expectation, as 
reflected by FRN and P300, would suggest differences modulated by 
anthropomorphism. 
  
Analyses of these 6 comparisons were completed using the cluster randomization 
technique (Maris & Oostenveld, 2007). These analyses revealed a number of 
significant areas of differences between conditions, all of which were below the 
significance threshold at p=0.025.   

 

Human gain – Robot gain: 
Within this comparison, of human minus robot activation on gain trials, there was one 
cluster identified. This was a positive difference in activity between 196-544ms 
across central and right posterior sites as shown in figure 6.  The distribution of the 
temporal and spatial significance suggests an early modulation of the FRN followed 
by a later modulation of P300. 
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Human gain – Computer Gain: 
Within this comparison, of human minus computer activation on gain trials, there was 
one cluster identified. This was a positive difference in activity between 258-352ms 
across occipital sites as shown in figure 7. This does not have the spatial or temporal 
significance to be an FRN or P300. 

Figure 6: Human gain – robot gain topographical map. 
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Figure 7: Human gain – computer gain topographical map. 
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Computer gain – robot gain: 
Within this comparison, of computer minus robot activation on gain trials, there were 
two clusters identified. As shown in figure 8, the first is a positive difference in activity 
between 220-284ms across central sites, which has the temporal and spatial 
significance to suggest a modulation of the FRN. The second cluster was a negative 
difference in activity between 284-510ms across left anterior sites, however this does 
not have the temporal or spatial significance to suggest an FRN or P300. 

 
 
 

Figure 8: Computer gain – robot gain topographical map. 
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Human loss – robot loss: 
Within this comparison, of human minus robot activation on loss trials, there was one 
cluster identified. As shown in figure 9, this was a positive difference in activity 
between 480-574ms across central posterior sites, however, the temporal and 
spatial significance does not suggest it is an FRN or P300. 

 
 
 
 
 

Figure 9: Human loss – robot loss topographical map. 
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Human loss – Computer loss: 
Within this comparison, of human minus computer activation on loss trials, there was 
one cluster identified. As shown in figure 10, this was a negative difference in activity 
between 348-412ms across occipital sites, this does not have the temporal or spatial 
significance to be either an FRN or P300. 

 
 
 
 
 

Figure 10: Human loss – computer loss topographical map. 
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Computer loss – Robot loss: 
Within this comparison, of computer minus robot activation on loss trials, there were 
two clusters identified. As shown in figure 11, the first was a positive difference in 
activity between 250-385ms posterior sites. The second was a negative difference in 
activity between 292-386ms across occipital sites. However, neither of these areas 
of activation have not have the temporal or spatial significance to be an FRN or 
P300.   

 
 
 Figure 11: Computer loss – robot loss topographical map. 
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Discussion 
This experiment combined behavioural, self-reported and neurophysiological 
methodologies culminating in a trust game that was played with three partners 
varying anthropomorphism while EEG was being recorded, followed by a 
generalised trust questionnaire for each partner. This allows one to gain a broader 
understanding of the impact of anthropomorphism on trust and expectation.  
 
Both the behavioural and self-reported data suggested that humans are perceived as 
more trustworthy than computers and robots, however there is no difference 
between the trustworthiness perception of robots and computers. This contrasts 
some of the previous research, for example, using a checkmate game, which is an 
adaptation of the trust game (Berg et al., 1995), Alarcon et al (2023) identified that 
there were no differences in trust behaviours between a human and a robot. In 
addition to this, although self-reported findings have been varied, some researcher 
suggested that there are no differences in self-reported trust between humans and 
machines (Jain et al., 2022; Alarcon et al., 2021). The present findings do not 
support hypothesis 1 suggesting there will be no behavioural differences between 
the partners. In addition, these findings only partly support hypothesis 2 suggesting 
more anthropomorphic agents will be perceived as more trustworthy. One factor 
which may be leading to these findings is the interaction between trustworthiness 
and dominance perceptions. 
 
Trustworthiness and dominance are the key dimensions of which people base their 
first impressions (Oosterhof & Todorov, 2008; Todorov et al., 2008; Sutherland et al., 
2013). Gurtman (1992) suggested that distrust is closely related to dominance 
perceptions. In the present study, the human was rated as significantly more 
trustworthy than the robot and the computer, however there was no significant 
difference between the robot and computer. In addition, the human was perceived as 
less dominant than the computer, however there was no difference between the 
human and robot and robot compared to computer. The significantly increased 
dominance rating seen for computer, may have impacted the trustworthiness rating. 
Interestingly, more anthropomorphic robots have been found to be perceived as 
being more dominant (Kim et al., 2022) and within social interactions more dominant 
robots are perceived as less trustworthy (Li et al., 2015; Yoo et al., 2022). However, 
in this study there was no significant difference between human and robot 
dominance perceptions, so the difference in trustworthy perceptions may be due to 
other factors.  
 
One theory which may explain this difference is the perfect automation schema 
(PAS) (Dzindolet et al., 2002). This theory states that users have a schema that 
suggests if automation is functioning correctly then it has an extremely low, even 
non-existent, error rate. It is suggested that PAS could be associated with higher 
trust prior to an error, but lower trust following an error (Dzindolet et al., 2002). 
Previous research suggests increased anthropomorphism leads to the application of 
social norms to an agent, and also increased expectations of the agent (Epley et al, 
2007; Airenti, 2015). Participants may have perceived the correct behaviour to be to 
reciprocate, as this is a social norm (Gouldner, 1960), leading them to expect the 
partner to return more than they had originally invested. The computer as the least 
anthropomorphic agent does not have these social norms placed on it. Whereas, the 
robot is a more anthropomorphic agent and therefore there may be greater 
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expectations of reciprocity placed on this agent. When the robot fails to reciprocate, 
the PAS is violated and trust in the agent decreases. There is no perfect human 
schema therefore the humans error is attributed to factors such as momentary 
inattention or fatigue, meaning the participants may be more forgiving to human 
errors (Dzindolet et al., 2002). Expectation violation can be reflected by ERP 
components such as FRN and P300.  
 
The ERP results suggest that there is a robot driven difference in activation between 
the three conditions. In the gain feedback conditions there was a larger FRN present 
for the human-robot comparison and the computer-robot comparison compared to no 
difference between FRN in the human-computer comparison. A larger FRN is 
associated with feedback that is worse than expected (Holroyd & Coles 2002; 
Nieuwenhuis et al., 2004; Schultz et al., 1997). This suggests that there were 
differences in violation of expectation between these agents, such that the robot 
elicited the largest expectation violation followed by the computer. These findings do 
not support hypothesis 3, which suggested the FRN would be larger for more 
anthropomorphic agents on loss trials as the human did not elicit the largest FRN. 
However, it does suggests anthropomorphism played a role in modulating trust and 
expectations of the participants. This could be explained by the PAS (Dzindolet et 
al., 2002). The robot has the expectation of performing perfectly by conforming the 
social norm of reciprocity (Gouldner, 1960), hence when it fails to meet this norm 
there is a large expectation violation suggesting the individual had over-trusted the 
robot. However, the computer, which is not anthropomorphic, may still be expected 
to perform perfectly and return more, however this expectation may not be as high 
as it is with the anthropomorphic robot due to the lack of imposing social norms onto 
the computer.  
 
The lack of a difference in the human-computer comparison could be due to the fact 
that humans understand other humans can make mistakes and they are willing to 
forgive them. Whereas automation, such as the computer or the robot 
anthropomorphic robots, are expected to perform perfectly and the robot is expected 
conform to social norms and when they do not perform perfectly, consistently 
returning more of the investment this violates the expectation and trust quickly 
decreases (Dzindolet et al., 2002). Such violations require the updating of mental 
models regarding partners in order to correctly calibrate trust for the next round.  
The results of the present study do not support hypotheses 4, suggesting P300 was 
modulated by anthropomorphism, such that computers would have a larger P300 on 
gain trials compared to humans or robots. The only P300 component identified was 
in the human gain – robot gain comparison, and it seemed to follow the FRN. As 
suggested by previous research, P300 is associated with expectation violation, 
attentional resources and mental model updating when an event violates an 
expectation in response to positive feedback (Holroyd & Coles, 2002; Barto, 1995; 
Montague et al., 1996; Schultz, 2002; Yeung & Sanfey, 2004; Hajcak et al., 2005; 
Wu & Zhou, 2009; Donchin, 1981; Heslenfeld, 2003). This implies that the P300 
reflected an unexpected outcome and therefore the updating of a mental model 
regarding the violation of expectation, as reflected by FRN, for the robot. 
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Conclusions 
Together these findings suggest there is an impact of anthropomorphism on trust 
and expectation, however, it was not what was hypothesised. The behavioural and 
self-reported data suggested that humans are perceived as more trustworthy than 
both a robot and a computer. The EEG results revealed there were differences in 
expectation for the robot compared to the computer and the human, such that on the 
gain trials the participants were expecting more from a robot than it actually returned, 
as shown but the modulation of FRN. These findings supports the PAS theory which 
suggests that automation is expected to be perfect, and within this game the perfect 
response would be to reciprocate. This expectation can be seen to be violated by the 
modulation of the FRN, and therefore trust in the automation decreased dramatically 
which is seen in the behavioural and self-reported data. However, further research 
into this relationship would be needed in order to understand the development and 
decline of these expectations and trust. 

Future work 
This study investigated trust though behavioural, self-reported and neurological 
measures. However, in analysis it only looked at the final measures of trust, rather 
than the development of trust throughout the game and the impact of trust violations 
on the following trusting behaviours and perceptions. Previous research has 
highlighted the importance of past experience and outcome evaluation in the 
development of trust (Sanders et al., 2017; Mayer et al., 1995; King-Casas et al., 
2005). To gain a more holistic view of how anthropomorphism impacts trust 
formation it is important to understand the impact of trust violations, as this would 
allow one to draw stronger conclusions regarding why the robot was perceived as 
less trustworthy compared to the human and whether this is related to the PAS.  
 
Secondly, another limitation of this study is that only one pitch was used for the 
robot, this pitch may have engendered the perceptions of dominance or 
trustworthiness, therefore masking any potential impacts of anthropomorphism. 
Dominance and trustworthiness perceptions are influenced by a range of factors, 
one of which being voice pitch, such that lower pitch is associated with higher 
dominance and higher pitched voice are perceived as more trustworthy (McAleer et 
al., 2014; Hodges-Simeon et al., 2010, Elkins & Derrick, 2013). This has also been 
noted in research involving autonomous vehicles, such that more submissive voice 
was perceived as being more trustworthy (Yoo et al., 2022). For future studies, one 
could include multiple voice pitches for the pepper robot to investigate dominance 
and trustworthiness perceptions alongside the impact of anthropomorphism.   
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